起点作文网

人教版高二数学知识点总结(整理10篇)

时间: 2024-07-06 栏目:实用范文

人教版高二数学知识点总结篇1

上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际情况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:

一、认真备课,做到既备学生又备教材与备教法。

上学期我根据教材内容及学生的实际情况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先考虑到,认真写好教案。每一课都做到有备而去,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮助学生进行归纳总结。

二、增强上课技能,提高教学质量。

增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为面对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得轻松,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分考虑每一个层次的学生学习需求和接受能力,让各个层次的学生都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都积极征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的'意见,改进教学工作。

四、认真批改作业、布置作业有针对性,有层次性。

作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到最大的效果。同时对学生的作业批改及时、认真,并分析学生的作业情况,将他们在作业过程出现的问题及时评讲,并针对反映出的情况及时改进自己的教学方法,做到有的放矢。

然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,积极向老老师学习以提高自己的教学水平。

人教版高二数学知识点总结篇2

立体几何初步

1、柱、锥、台、球的结构特征

(1)棱柱:

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥

几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:

几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点

(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成

几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。

(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体

几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。

人教版高二数学知识点总结篇3

1.辗转相除法是用于求公约数的一种方法,这种算法由欧几里得在公元前年左右首先提出,因而又叫欧几里得算法.

2.所谓辗转相法,就是对于给定的两个数,用较大的数除以较小的数.若余数不为零,则将较小的数和余数构成新的一对数,继续上面的除法,直到大数被小数除尽,则这时的除数就是原来两个数的公约数.

3.更相减损术是一种求两数公约数的方法.其基本过程是:对于给定的两数,用较大的数减去较小的数,接着把所得的差与较小的数比较,并以大数减小数,继续这个操作,直到所得的数相等为止,则这个数就是所求的公约数.

4.秦九韶算法是一种用于计算一元二次多项式的值的方法.

5.常用的排序方法是直接插入排序和冒泡排序.

6.进位制是人们为了计数和运算方便而约定的记数系统.“满进一”,就是k进制,进制的基数是k.

7.将进制的数化为十进制数的方法是:先将进制数写成用各位上的数字与k的幂的乘积之和的形式,再按照十进制数的运算规则计算出结果.

8.将十进制数化为进制数的方法是:除k取余法.即用k连续去除该十进制数或所得的商,直到商为零为止,然后把每次所得的余数倒着排成一个数就是相应的进制数.

人教版高二数学知识点总结篇4

一、导数的应用

1.用导数研究函数的最值

确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题

1)费用、成本最省问题

2)利润、收益最大问题

3)面积、体积最(大)问题

二、推理与证明

1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式

对于含有参数的一元二次不等式解的讨论

1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

拓展阅读

说明:以下内容为本文主关键词的百科内容,一词可能多意,仅作为参考阅读内容,下载的文档不包含此内容。每个关键词后面会随机推荐一个搜索引擎工具,方便用户从多个垂直领域了解更多与本文相似的内容。

1、数学:数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。在人类历史发展和社会生活中,数学发挥着不可替代的作用,同时也是学习和研究现代科学技术必不可少的基本工具。数学史数理逻辑与数学基础a:演绎逻辑学(也称符号逻辑学),b:证明论(也称元数学),c:递归论,d:模型论,e:公理集合论,f:数学基础,g:数理逻辑与数学基础其他学科。数论a:初等数论,b:解析数论,c:代数数论,d:超越数论,e:丢番图逼近,f:数的几何,g:概率数论,h:计算数论,i:数论其他学科。代数学a:线性代数,b:群论,c:域论,d:李群,e:李代数,f:Kac-Moody代数,g:环论(包括交换环与交换代数,...头条搜索更多高二数学下册知识点总结

2、类比推理:类比推理亦称“类推”。推理的一种形式。根据两个对象在某些属性上相同或相似,通过比较而推断出它们在其他属性上也相同的推理过程。它是从观察个别现象开始的,因而近似归纳推理。但它又不是由特殊到一般,而是由特殊到特殊,因而又不同于归纳推理。分完全类推和不完全类推两种形式。完全类推是两个或两类事物在进行比较的方面完全相同时的类推;不完全类推是两个或两类事物在进行比较的方面不完全相同时的类推。这是科学研究中常用的方法之一。它是从特殊推向特殊的推理。类比推理是根据两个或两类对象有部分属性相同,从而推出它们的其他属性也相同的推理。简称类推、类比。以关于两个事物某些属性相同的判断为前提,推出两个事物的其他属性相同的结论的推理。如声和光有不少属性相同--直线传播,有反射、折射和干扰等现象;由此推出:既然声有波动性质,光也有波动性质。这就是类比推理。类比推理具有或然性。如果前提中确认的共同属性很少,而且共同属性和推出来的属性没有什么关系,这样的类比推...谷歌搜索更多高二数学下册知识点总结

3、总结:总结是事后对某一阶段的工作或某项工作的完成情况,包括取得的成绩、存在的问题及得到的经验和教训加以回顾和分析,为今后的工作提供帮助和借鉴的一种书面材料。(1)自身性。总结都是以第一人称,从自身出发。它是单位或个人自身实践活动的反映,其内容行文来自自身实践,其结论也为指导今后自身实践。(2)指导性。总结以回顾思考的方式对自身以往实践做理性认识,找出事物本质和发展规律,取得经验,避免失误,以指导未来工作。(3)理论性。总结是理论的升华,是对前一阶段工作的经验、教训的分析研究,借此上升到理论的高度,并从中提炼出有规律性的东西,从而提高认识,以正确的认识来把握客观事物,更好地指导今后的实际工作。(4)客观性。总结是对实际工作再认识的过程,是对前一阶段工作的回顾。总结的内容必须要完全忠于自身的客观实践,其材料必须以客观事实为依据,不允许东拼西凑,要真实、客观地分析情况、总结经验。(1)综合性总结。对某一单位、某一部门工作进行全面性总结,既反...头条搜索更多高二数学下册知识点总结

4、因式分解:把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。把一个多项式在一个范围化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。因式分解是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,在数学求根作图、解一元二次方程方面也有很广泛的应用,是解决许多数学问题的有力工具。因式分解方法灵活,技巧性强。学习这些方法与技巧,不仅是掌握因式分解内容所需的,而且对于培养解题技能、发展思维能力都有着十分独特的作用。学习它,既可以复习整式的四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、思维发展性、运算能力,又可以提高综合分析和解决问题的能力。基本结论:分解因式为整式乘法的逆过程。高级结论:在高等代数上,因式分解有一些重要结论,在初等代数层面上证明很困难,但是理解很容易。

人教版高二数学知识点总结篇5

(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。

顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。如在示意图中,A框和B框是依次执行的,只有在执行完A框指定的操作后,才能接着执行B框所

指定的操作。

(2)条件结构:条件结构是指在算法中通过对条件的判断根据条件是否成立而选择不同流向的

算法结构。

条件P是否成立而选择执行A框或B框。无论P条件是否成立,只能执行A框或B框之一,不可能同时执行

A框和B框,也不可能A框、B框都不执行。一个判断结构可以有多个判断框。

(3)循环结构:在一些算法中,经常会出现从某处开始,按照一定条件,反复执行某一处理步骤的情况,这就是循环结构,反复执行的处理步骤为循环体,显然,循环结构中一定包含条件结构。循环结构又称重复结构,循环结构可细分为两类:

①一类是当型循环结构,如下左图所示,它的功能是当给定的条件P成立时,执行A框,A框执行完毕后,再判断条件P是否成立,如果仍然成立,再执行A框,如此反复执行A框,直到某一次条件P不成立为止,此时不再执行A框,离开循环结构。

②另一类是直到型循环结构,如下右图所示,它的功能是先执行,然后判断给定的条件P是否成立,如果P仍然不成立,则继续执行A框,直到某一次给定的条件P成立为止,此时不再执行A框,离开循环结构。

注意:

1循环结构要在某个条件下终止循环,这就需要条件结构来判断。因此,循环结构中一定包含条件结构,但不允许“死循环”。

2在循环结构中都有一个计数变量和累

加变量。计数变量用于记录循环次数,累加变量用于输出结果。计数变量和累加变量一般是同步执行的,累加一次,计数一次

人教版高二数学知识点总结篇6

平面向量

戴氏航天学校老师总结加法与减法的代数运算:

(1)若a=(x1,y1),b=(x2,y2)则ab=(x1+x2,y1+y2).

向量加法与减法的几何表示:平行四边形法则、三角形法则。

戴氏航天学校老师总结向量加法有如下规律:+=+(交换律);+(+c)=(+)+c(结合律);

两个向量共线的充要条件:

(1)向量b与非零向量共线的充要条件是有且仅有一个实数,使得b=.

(2)若=,b=则‖b.

平面向量基本定理:

若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,戴氏航天学校老师提醒有且只有一对实数,,使得=e1+e2

人教版高二数学知识点总结篇7

1、直线的倾斜角的概念:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x轴平行或重合时,规定α=0°.

2、倾斜角α的取值范围:0°≤α0时,λa与a同方向;

当λ1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ0)或反方向(λb>0)注意还有一个;②定义:|PF1|+|PF2|=2a>2c;③e=④长轴长为2a,短轴长为2b,焦距为2c;a2=b2+c2;

2、双曲线:①方程(a,b>0)注意还有一个;②定义:||PF1|-|PF2||=2a<2c;③e=;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2

3、抛物线:①方程y2=2px注意还有三个,能区别开口方向;②定义:|PF|=d焦点F(,0),准线x=-;③焦半径;焦点弦=x1+x2+p;

4、直线被圆锥曲线截得的弦长公式:

三、直线、平面、简单几何体:

1、学会三视图的分析:

2、斜二测画法应注意的地方:

(1)在已知图形中取互相垂直的轴Ox、Oy。画直观图时,把它画成对应轴o'x'、o'y'、使∠x'o'y'=45°(或135°);

(2)平行于x轴的线段长不变,平行于y轴的线段长减半.

(3)直观图中的45度原图中就是90度,直观图中的90度原图一定不是90度.

3、表(侧)面积与体积公式:

(1)柱体:①表面积:S=S侧+2S底;②侧面积:S侧=;③体积:V=S底h

(2)锥体:①表面积:S=S侧+S底;②侧面积:S侧=;③体积:V=S底h:

(3)台体①表面积:S=S侧+S上底S下底②侧面积:S侧=

(4)球体:①表面积:S=;②体积:V=

4、位置关系的证明(主要方法):注意立体几何证明的书写

(1)直线与平面平行:①线线平行线面平行;②面面平行线面平行。

(2)平面与平面平行:①线面平行面面平行。

(3)垂直问题:线线垂直线面垂直面面垂直。核心是线面垂直:垂直平面内的两条相交直线

5、求角:(步骤-------Ⅰ.找或作角;Ⅱ.求角)

(1)异面直线所成角的求法:平移法:平移直线,构造三角形;

(2)直线与平面所成的角:直线与射影所成的角

四、导数:导数的意义-导数公式-导数应用(极值最值问题、曲线切线问题)

1、导数的定义:在点处的导数记作.

2、导数的几何物理意义:曲线在点处切线的斜率

①k=f/(x0)表示过曲线y=f(x)上P(x0,f(x0))切线斜率。V=s/(t)表示即时速度。a=v/(t)表示加速度。

3.常见函数的导数公式:①;②;③;

⑤;⑥;⑦;⑧。

4.、导数的四则运算法则:

5、导数的应用:

(1)利用导数判断函数的单调性:设函数在某个区间内可导,如果,那么为增函数;如果,那么为减函数;

注意:如果已知为减函数求字母取值范围,那么不等式恒成立。

(2)求极值的步骤:

①求导数;

②求方程的根;

③列表:检验在方程根的左右的符号,如果左正右负,那么函数在这个根处取得极大值;如果左负右正,那么函数在这个根处取得极小值;

(3)求可导函数值与最小值的步骤:

ⅰ求的根;ⅱ把根与区间端点函数值比较,的为值,最小的是最小值。

五、常用逻辑用语:

1、四种命题:

⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若p则q;⑷逆否命题:若q则p

注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。

2、注意命题的否定与否命题的区别:命题否定形式是;否命题是.命题“或”的否定是“且”;“且”的否定是“或”.

3、逻辑联结词:

(1)且(and):命题形式pq;pqpqpqp

(2)或(or):命题形式pq;真真真真假

(3)非(not):命题形式p.真假假真假

假真假真真

假假假假真

“或命题”的真假特点是“一真即真,要假全假”;

“且命题”的真假特点是“一假即假,要真全真”;

“非命题”的真假特点是“一真一假”

4、充要条件

由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。

5、全称命题与特称命题:

短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号表示。含有全体量词的命题,叫做全称命题。

短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号表示,含有存在量词的命题,叫做存在性命题。

人教版高二数学知识点总结篇8

一、不等式的性质

1.两个实数a与b之间的大小关系。

2.不等式的性质。

(4)(乘法单调性)

3.绝对值不等式的性质

(2)如果a>0,那么

(3)|ab|=|a||b|。

(5)|a|-|b|≤|a±b|≤|a|+|b|。

(6)|a1+a2+……+an|≤|a1|+|a2|+……+|an|。

二、不等式的证明

1.不等式证明的依据

(2)不等式的性质(略)

(3)重要不等式:

①|a|≥0;a2≥0;(a-b)2≥0(a、b∈R)

②a2+b2≥2ab(a、b∈R,当且仅当a=b时取“=”号)

2.不等式的证明方法

(1)比较法:要证明a>b(a0(a-b<0),这种证明不等式的方法叫做比较法。

用比较法证明不等式的步骤是:作差——变形——判断符号。

(2)综合法:从已知条件出发,依据不等式的性质和已证明过的不等式,推导出所要证明的不等式成立,这种证明不等式的方法叫做综合法。

(3)分析法:从欲证的不等式出发,逐步分析使这不等式成立的充分条件,直到所需条件已判断为正确时,从而断定原不等式成立,这种证明不等式的方法叫做分析法。

证明不等式除以上三种基本方法外,还有反证法、数学归纳法等。

三、解不等式

1.解不等式问题的分类

(1)解一元一次不等式。

(2)解一元二次不等式。

(3)可以化为一元一次或一元二次不等式的不等式。

①解一元高次不等式;

②解分式不等式;

③解无理不等式;

④解指数不等式;

⑤解对数不等式;

⑥解带绝对值的不等式;

⑦解不等式组.

2.解不等式时应特别注意下列几点:

(1)正确应用不等式的基本性质。

(2)正确应用幂函数、指数函数和对数函数的增、减性。

(3)注意代数式中未知数的取值范围。

3.不等式的同解性

人教版高二数学知识点总结篇9

一、不等关系及不等式知识点

1.不等式的定义

在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号、连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式.

2.比较两个实数的大小

两个实数的大小是用实数的运算性质来定义的,有a-baa-b=0a-ba0,则有a/baa/b=1a/ba

3.不等式的性质

(1)对称性:ab

(2)传递性:ab,ba

(3)可加性:aa+cb+c,ab,ca+c

(4)可乘性:ab,cacb0,c0bd;

(5)可乘方:a0bn(nN,n

(6)可开方:a0

(nN,n2).

注意:

一个技巧

作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方.

一种方法

待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围.

人教版高二数学知识点总结篇10

空间中的垂直问题

(1)线线、面面、线面垂直的定义

①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

③平面和平面垂直:如果两个平面相交,所成的二面角(从一条直线出发的两个半平面所组成的图形)是直二面角(平面角是直角),就说这两个平面垂直。

(2)垂直关系的判定和性质定理

①线面垂直判定定理和性质定理

判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面。

性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

②面面垂直的判定定理和性质定理

判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。

性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面。

    【实用范文】栏目
  • 上一篇:学无止境小学如何写,学无止境200字(整理2篇 )
  • 下一篇:关于新青年时代发言稿(精选3篇)
  • 相关文章

    推荐文章

    相关栏目