起点作文网

超声与次声教学设计(收集3篇)

时间: 2024-12-24 栏目:实用范文

超声与次声教学设计范文篇1

在超声诊断学教学中,超声影像资料库的建设是开展超声诊断学教学、实训、实习的基础和必备条件。UIIS的使用为数字化图像的收集提供了一种全新的方式,为超声影像资料库的建设提供了丰富的影像信息基础。超声诊断学理论教学大多采用多媒体课件为主的教学方式,但制作多媒体课件是一件费时费力的事,UIIS应用之后,使多媒体课件制作更加方便、内容更加丰富。UIIS同时还具有查询超声诊断意见和超声诊断描述的作用,只要输入描述疾病的关键词,就可以查询到该疾病患者的详细资料及图像,使教学内容更全面,更有利于学生的理解和掌握,大大提高了学生学习的积极性,显著增强了教学效果。在科研方面,UIIS的应用有利于将教学、学术与临床研究相结合,通过对存储报告中的数据和图像进行统计学分析,便于撰写论文和科研著作。

2UIIS的应用提高了超声诊断学实训教学的质量,改变了教学模式

随着医学影像技术的飞速发展、医学院校招生规模的不断扩大,超声实训室的硬件设备远远不能满足实训课的教学需求。由于实训室超声仪器数量少、学生人数多、实训学时有限等因素,不能保证每位学生都进行实际操作,而UIIS的应用可以使学生在现有设备条件下进一步加深对理论知识的理解,从而提高分析问题和解决问题的能力[3]。UIIS中保留的动态图像能真实地再现检查过程,模拟医院超声诊断室的实际状况,利用UIIS的超声图文工作站进行超声描述、诊断和打印,成功实现了临床实境教学,让学生在实训课中真切感受到临床一线工作的状态。因UIIS具备拥有大量清晰数字化图像和简单方便的操作界面等优点,每位学生可以根据自身情况进行学习,可以对图像资料任意调取和查看,达到动态显示、实时观察,还可使同一病例不同时间的各种影像资料和文字资料同时显示,充分调动了学生的学习积极性和主动性,提高了学习兴趣。UIIS在超声诊断实训教学中的充分应用不仅减小了教师的劳动强度,增加了教学资料的来源渠道,延长了教学资料的保存时间,更重要的是加快了知识的更新速度,使师生之间能够更好地进行讨论、交流,从而大大提高教学质量。

3UIIS的应用方便了超声诊断考试的改革

UIIS实境教学也为超声诊断的考核提供了方便快捷的测试方法。教师可以从UIIS中根据专业层次不同,在不同系统中随机挑选若干幅图像作为考试内容。当处于考试模式时,所显示的图像只显示患者的病史信息以及图像本身,学生需根据图像做出正确的技术选择和相应的超声诊断。这种方式可以真正达到考核学生诊断思维的效果,使考试变得更加方便、保密、公平、公正[4],同时可以培养学生的专业技术能力和分析问题、解决问题的能力,达到本专业人才培养目标的要求。4UIIS在超声诊断学教学应用中存在的问题首先,UIIS是医院信息系统(HIS)的重要组成部分,同时又与医院医学影像存储与传输系统(PACS)紧密相连,UIIS在超声诊断学教学中的应用需要学校与附属医院之间进一步加强网络资源共享。其次,教学UIIS内容多、信息量大,学生不容易准确选取所需内容,还会出现系统故障,影响正常的教学工作。所以带教教师需要学习一些计算机方面的知识,熟练操作UIIS系统,解决一些简单的问题,以保证教学工作能够正常进行。

超声与次声教学设计范文篇2

[关键词]声学学科发展课程设置

[中图分类号]G642.3[文献标识码]A[文章编号]2095-3437(2015)01-0091-03

声学的起源可追溯到古代人类对于听觉、语言、音乐等知识的认识,直到19世纪中叶,逐渐发展成为一门体系较为严密的学科,1877年英国物理学家瑞利所著的《声学原理》就是一部总结经典声学理论的巨著[1],并由此开创了现代声学的先河。

一、声学的发展概况

世界上最早的声学研究起始于音乐方面,中国先秦时就有“情发于声,声成文谓之音”之说,对声学的系统研究是从17世纪初伽利略研究单摆周期和物体振动开始的。[2]现代声学同多种领域的科学技术的联系日益紧密,形成了众多的相对独立的分支学科。从最早形成的建筑声学、电声学直到目前仍在探讨的“分子-量子声学”、“等离子体声学”和“地声学”等,学科分支数目已超过20个,并且仍有新的分支在不断产生。声学不仅涉及包括生命科学在内的几乎所有主要的基础自然科学,还在相当大的程度上涉及若干人文科学。美国声学学会把声学分为已被公认的18个主要分支学科,分属于不少于12门自然科学,并扩展到艺术领域。

现代声学具有极强的交叉性与延伸性,它与现代科学技术的大部分学科发生了交叉,形成了一系列诸如水声学、医学超声学、环境声学、生物声学等新型独特的交叉学科方向,在现代科学技术中起着举足轻重的作用。水声学是近代声纳设计和海洋开发的技术基础,所有的水下探测、通讯、导航、遥控等活动都离不开声学。现阶段水声学已不仅仅应用于军事上,在海洋开发方面也有广泛的应用,例如近海油气田的数字地震勘探、失事飞机、海难救助的定位等。超声及其应用是近代声学发展中最为迅速的新兴分支,超声无损检测、超声医疗已在工业和生活方面普遍推广。目前,高分辨的彩色B超所得到的图像可与解剖图媲美。次声学的研究也有很好的应用领域,次声方法已成为侦察大气中核爆炸的主要方法之一,利用次声也可以预测许多自然灾害事件,如发生地震、火山爆发、暴风雨之前都曾记录到相伴随的次声波。电声技术的发展和近代通讯技术的发展紧密相关,当前比较热门的研究主要集中在新概念扬声器。噪声污染已与空气污染、水的污染并列为人类环境的三大污染,因此噪声控制已成为各国所重视的解决环境问题的重要课题。对噪声和振动的研究还和国防密切相关,例如,火箭、导弹飞行时的振动及其控制一直是衡量它们总体性能的重要指标。多种消声方法,包括减振、人为屏蔽、有源消声等正在一些工业领域获得应用。建筑声学的发展和古代宫殿、教堂以及剧院的建筑有关,它为现代大型剧场、大会堂的设计提供声学指导,也为城市噪声控制提供标准。在声学发展史中值得一提的还有生物声学,20世纪初,美国生理学家葛拉姆包斯指出,蝙蝠会用喉头发射超声,而用耳朵接收回声,因而可以在黑夜中飞行与捕食。语言自动识别是人们多年的理想。欧姆提出了“声音是由许多频率合成”的概念;亥姆霍兹发展了这一概念,采用谐振腔对语言进行频率分析[3],从而奠定了语言声学的基础。随着近代信息科学的发展,语言合成、语言识别的理论得到迅速发展,人机交互语言应用系统正在成为研究的热点。

从声学方向的发展趋势来看,笔者认为主要体现在以下几个方面:

(一)在理论方面,经典声学与现代非线性数学和非线性物理相结合形成非线性声学。研究有限振幅波的非线性声学,已逐步构成了日趋完整的现代声学体系,非线性声学是现代声学及其应用的基本出发点和基础,也是现代声学最前沿的学科和学术领域。

(二)声学与海洋学的结合形成海洋声学。声波是目前唯一能在海水中远距离传播的信息载体。在美国科技白皮书中,关于海洋高技术的研究内容、海洋声学技术占有重要篇幅。目前海洋声学技术的研究内容主要包括探测声纳、导航声纳、定位声纳、水声通信机和声层析等技术。

(三)声学与光学、流体力学相结合形成声致发光学。液体中的声致发光主要有两类机理,分别是多泡声致发光和单泡声致发光。对声空化与声致发光的物理过程特性进行理论描述是一个极具挑战性的前沿科学问题。

(四)声学与现代信号处理和控制技术相结合形成噪声控制学。噪声控制学在未来的发展具有很大的空间,有源噪声与振动控制技术是当前噪声控制技术中最先进的研究方向和前沿热点之一。

二、国内外一流声学学科的发展状况

宾夕法尼亚大学声学研究组成立于1965年,是全美最主要的声学本科教育基地,其研究方向主要有声学成像和全息术、声与振动控制、建筑声学、大气声学、噪声控制、非破坏性评估、非线性声学、物理声学、信号处理、超声学、水声学、波传播与散射等。声学研究组面向不同的教学对象,设有学士、硕士、博士等培养类别。分别对本科生和研究生开设大量的声学及相关领域的课程,并分门别类开设配套实验。罗德岛州大学的海洋工程系最早建立于1966年,是全美乃至国际上知名的海洋工程领域的研究与教学机构,其主要研究方向为海洋仪器和海底映射、水声学和数据分析、海洋力学和波浪力学、海岸和近岸建模、海洋地质力学、海岸和海面结构以及其他相关领域研究。安德列耶夫声学研究所是俄罗斯最大的声学研究所,主要从事声学领域基础和应用性研究。1953年在前苏联科学院“列别捷夫”物理研究所声学实验室基础上成立,1994年该所获得国家科学中心的地位。该所是海洋噪声源分析、海洋声传播研究领域的领导者,开展了复杂机械结构内的震荡过程、声学-水动力现象、反噪声和振动方法等方面的研究。英国的南安普敦声学和振动研究所、伦敦帝国理工学院等在声学教育方面长期具有优势,能够颁发各种等级的声学学位证书。

目前,在国内南京大学、中国科学院、同济大学、清华大学、北京大学、国防科技大学、哈尔滨工程大学、西北工业大学、中国海洋大学、华南理工大学、陕西师范大学等高校及科研机构都有声学方向,其中南京大学是我国高校中主要的声学教学和科研基地,拥有国内唯一的声学本科专业和国家重点学科,是中国最早的综合性声学科研与教学实体。迄今,形成了完善的从本科生、硕士研究生到博士研究生和博士后的各级人才培养体系,而其他一些院校都是到研究生阶段才有声学专业。中国科学院声学研究所成立于1964年,主要涉及声学专业和信号与信息处理两大专业。前者侧重于基础研究和应用基础研究,后者主要侧重于数字信号处理研究。

1956年同济大学建成国内第一个混响室和隔声室,并建成远东最大的消声室、标准混响及标准隔声测试室,其研究方向主要包括检测声学、噪声控制、建筑声学、环境声学四大专业方向。哈尔滨工程大学水声工程学院是在原水声工程系、水声研究所和水声技术国家重点实验室的基础上组建而成,是我国最早从事水声工程教学和科研的单位之一。隶属于该院的水声工程专业是目前我国该领域唯一的重点学科,在水声工程领域有着重要影响。西北工业大学声学与信息工程系在原有教研室的基础上组建成立,以该系为主体的“水声工程”学科曾被列入国防科工委“十五”重点建设规划。

海军工程大学和青岛潜艇学院都有从事声纳相关的研究。在强声学方面,我国从事强声学方面研究的单位不多,北京航空航天大学流体与工程实验室仅在“十五”期间,在流体强声学方面开展过一些研究,但他们主要从事航空发动机的掩声、降噪方面的研究工作。目前国防科技大学具有特色的流体强声技术在全国处于领先地位,研究方向涉及强声物理和技术、非线性声学、水声物理以及强声物理防护研究等。按教育部学科的分类,该校建立了物理学一级学科下的声学二级学科博士点[4],目前该校声学学科已跻身于湖南省重点学科之列。

三、声学相关课程的设置

各个高校有关声学的研究方向和课程设置并不相同,有的差别还比较大。在物理学中,通常把现代物理学包括在课程设置中,而声学只包括在与信号处理、波传播和某些非线性现象有关的部分课程之中。医学、工程学和建筑学课程一般只是简略地提及声学,或作为一门选修科目,常常不涉及基础和应用研究。事实上,绝大部分声学专门人才都已“潜伏”到高度专业化的领域进行研究。目前,声学主要研究方向包括物理声学、非线性声学、强声学、光声信息科学与技术、光声生物医学成像与检测、声学微传感器与探测技术、功能材料的光声效应、声学超常介质材料、超声物理及声人工结构、超声换能器、声表面波与固体界面声学、超声电子学、医学超声、电声学、水声学、建筑声学、通信声学、噪声控制等。其中,物理声学是各分支的基础,它研究各种机械振动的原理。近年来,非线性声学也有引人注目的发展。与这些研究方向相关的学科专业主要有电子与通信工程、信号与信息处理、传播学、水声工程、地质工程、光学等。

声学的交叉学科问题要求开课单位在声学相关课程设置时必须把物理理论及上述各交叉领域方面的专门课程都考虑进去。在当前声学学科定位下,由于声学的多学科性质和在各研究领域中所达到的专业化的程度不同,很难拟定出详细的各研究方向都整理的声学课程表。然而,即便声学学科需要学习的课程所涉及的知识面比较广,为便于各个研究分支增进相互了解,增加各分支间的相互协作,我们有必要构建出一个符合大众声学基本要求的课程轮廓。笔者通过对国内外一些高校的声学学科调研,对声学相关课程的设置归纳为数理基础、计算机及应用、相关学科基础和声学专业课四大类,其中,数理基础大部分都是高等数学、普通物理、数学物理方法、理论物理等方面的基础课程;计算机及应用方面一般包括计算机原理、算法语言及程序设计等;侧重点不同的相关学科大都另外开设了不同的基础课程,例如信号与信息处理学科一般会开设现代数字信号处理、信号处理中的数学方法等课程;声学专业课主要有声学基础、理论声学、声学实验等基础课程,具有声学研究生专业培养的高校和科研机构,在研究生学习阶段一般会开设固体中声场与波、非线性声学、声学进展、计算声学、声辐射原理等专业课程。

四、结论

声音无处不在,声学是研究媒质中机械波(即声波)的科学,研究范围包括声波的产生、接收、转换和声波的各种效应。[5]我国开展声学研究有较好的基础,声学学科领域的研究要以应用技术、应用基础理论研究和技术开发为特点。国内高校和一些科研机构需要维持一定数量的从事声学研究和教学的高层次人才,开设的课程应能够反映声学发展的国际前沿领域和发展动态,所培养的声学科技人员应具有坚实、系统的声学理论基础和深入的专门知识,掌握相应的现代声学实验技术。总而言之,只要对我国今后声学研究工作进行合理规划并适当增加投入,就能够在未来相当长的一段时间内做出具有创造性的科研成果。

[注释]

[1]马大猷,杨训仁.声学漫谈[M].长沙:湖南教育出版社,1994.

[2]许肖梅.声学基础[M].北京:科学出版社,2003.

[3]宋文淼,王建英.谐振腔中的亥姆霍兹定理及电磁场的本征函数展开问题[J].电子与信息学报,1989(5):518-527.

超声与次声教学设计范文篇3

超声诊断学作为影像学检查的一个分支,在现代医学中发挥着重要的作用。超声检查在各级医院,包括师以下卫生机构已得到广泛应用,超声诊断是卫生士官必须掌握的教学内容。提高超声诊断学教学水平,对各专业卫生士官的教学工作都具有重要意义。我们经过几年的教学实践,认为要提高超声诊断学教学质量应该注意以下几个方面。

1合理分配课时

超声诊断学是声学、医学和电子工程技术相结合的一门学科,涉及的概念与原理多且复杂,教学难点较多,但教学课时较少,要在短短的几个课时内使学员完全掌握这门知识难度很大。因此,应该立足现有条件,科学合理地安排内容与课时,最大限度地把教学大纲要求的内容讲清楚。

士官教学存在的最主要困难是学员来自基层,基础知识薄弱。在教学工作中,我们根据不同专业学员的知识背景不同,有针对性地选用教材,科学安排课时,不同层次、不同专业实施不同的教学内容。另外,考虑到学员普遍专业基础不扎实的现象,在课堂教学中,拿出一定时间,复习相关的解剖、病理知识,为理解超声声像图的特征性改变奠定基础,取得了事半功倍的效果。

2科学应用多媒体技术

超声诊断教学不同于一般的物理诊断学教学,它是在动态中形成图像的同时观察图像[1]。传统的粉笔、挂图、板书、文字幻灯等教学模式远不能适应该学科抽象性强、理解难度大的特点,明显影响了教学效果和教学质量[2]。而多媒体技术将单调、乏味的课堂知识形象地体现在声音、图像、影视及动画中,使得真正基于交流、讨论的教学方法成为可能。多媒体课件通过声、色、静、动、图文并茂的媒体形成,多角度刺激学员的感官,将抽象的过程直观、生动地呈现给学员,极大地调动了其参与教学的积极性,同时,时空观的扩展也有利于开阔学员的思维空间[3]。

平时工作中我们利用先进的数字化彩色超声诊断仪及超声工作站,采集大量各系统、部位正常声像图及典型病理声像图,用于制作多媒体教学课件。其中文字部分提纲挈领,简述各系统疾病的解剖、病理、超声声像图的特征性表现及鉴别诊断的要点;用大量的解剖图、病理图及典型的超声声像图给以感性表现;同时还根据教学需要插入一些动态图像及超声检查短片等。强烈的视觉效果给学员留下了深刻的印象,加深了理解及记忆。需要注意的是,使用多媒体教学并不是完全放弃板书,用黑板绘简易图或示意图,如超声的反射、折射、多普勒频谱图、二尖瓣M型运动曲线、胆囊“WES”征等,可使复杂问题简单化,能起到由浅入深、循序渐进的作用。

3精心设计教学内容

不同专业的超声诊断学的教学目的也不同。各专业共性的教学内容包括超声诊断学的主要应用范围、发展前景、基本成像原理、适应证、禁忌证、正常值等基本知识。临床医学和影像医学专业的学员还应掌握各种影像检查技术的优点和缺点,熟悉常见疾病的超声诊断和鉴别诊断,能够针对不同系统疾病选择不同的检查方法,进行最优化的影像诊断。因此,我们针对学员的不同情况设置不同的教学内容,提高教学目的性,使教学的深度、广度、难度更适合学员的接受能力。同时,课前还了解学员的信息,包括学过的课程及其掌握程度、学习兴趣等。在学员已掌握知识的基础上突出重点,精选教学内容,优化结构组合,明确主次。讲授的具体内容理论联系实际,注意学用结合,学以致用。课堂教学注意教学互动,启发思维。抓住现象的内在规律,举一反三、触类旁通。

4注重练习

超声诊断学是一门实践性很强的学科,超声图像的获取与诊断很大程度上依赖于超声医师的手法与经验。练习课的目的就是使学员将所学知识灵活运用于临床实践。超声无辐射损伤,安全性大,学员之间可以反复多次互相练习。我们在讲解仪器的构造组成及具体操作方法后,选择一名学员作为被检查者,教员操作示范,同时讲解观察内容、正常声像图表现及具体操作手法。然后,让学员相互练习,包括选择体位、探头放置部位、扫查切面(纵切、横切、斜切等)、扫查方法等操作技术,教员随时指导。

参考文献

1李颖嘉,鲁鸿,龚渭冰.超声诊断教学中多媒体技术应用初探.临床超声医学杂志,2003,5(5):317318.

    【实用范文】栏目
  • 上一篇:我最喜欢的歌作文(收集7篇)
  • 下一篇:学校端午节活动总结范文(整理9篇)
  • 相关文章

    推荐文章

    相关栏目