【关键词】煤矿高压电缆接线盒温度监测
煤炭是我国能源生产和消耗的主体,在一次能源和二次能源中占有重要的地位,在未来的一段时间内煤炭在能源结构中的主导地位不能动摇。随着煤矿开采强度的增加和深度的增加,煤矿电网的的规模和容量急剧增加,矿用高压电缆接线接线盒的数量越来越多。矿用高压电缆经常发生故障,严重影响了煤矿井下的安全生产工作的顺利开展,据不完全统计,井下电缆事故70%是由于电缆接线盒内连接引起的。目前,我国煤矿井下高压电缆接线盒维护普遍采用工作人员定期巡查,人为检验接线盒的状态好坏,这种方法浪费了大量劳动力,检验过程复杂、可靠性低,严重制约着煤矿井下安全生产的稳定性和生产效率。
一、矿用高压电缆接线盒
矿用高压电缆接线盒是煤矿井下应用较多的设备其主要由防爆外壳、接线端子和基座组成,防爆外壳为钢板结构,上盖采用螺栓压紧结构,两侧为电源线进出线端口,接线端子位于壳体内的基座上,连接时采用压板将电缆接头压接,接线端子固定在机座上,基座为高压瓷瓶结构,基座上设有辅助接线端子。矿用高压电缆接线盒适用于爆炸性气体(甲烷)和煤尘混合物的矿井中,用于连接交流50Hz,电压3.3kV、6kV和10kV电网中的电缆。矿用高压电缆接线盒用于周围空气温度-20℃―+40℃、空气相对湿度不大于95%(+25℃)、无强烈颠簸和冲击震动、无滴水和雨雪侵入的工作场合。
二、矿用高压电缆接线盒温度监测系统设计
煤矿井下巷道结构复杂,大部分为树形或者鱼刺形结构,井下电网结构十分复杂,高压电缆接线盒具有分布面广、相距较远、集中性差等特点。结合以上特点,以数字信号处理器(DSP)为核心设计矿用高压电缆接线盒温度监测系统,系统主要由DSP最小系统、温度检测单元、超温报警单元、显示单元和通信单元组成,其中DSP最小系统采集温度监测单元反馈的数据,并进行计算、处理;温度检测单元用于接线盒内部温度测量,超温报警单元以声音和光的方式提示超温故障,显示单元用于显示系统的工作状态和接线盒内部温度情况,通信单元用于实现监测系统与计算机之间的通讯,下边对DSP最小系统、温度检测单元和超温报警单元进行详细设计。
2.1DSP最小系统设计
数字信号处理器(DSP)TMS320F2812最高数据处理频率可达到150MHz,具有12位16通道模/数转换器,单路转换时间最快可达60ns,具有浮点型数据计算函数库,能够在定点处理器上实现浮点计算,同时在处理器中集成了具有串行通信和eCAN通讯标准通信接口,方便了与上位机和一些测量设备的数据传送,在伺服电机控制、电气设备状态监测、汽车通讯和航空航天等领域具有广泛的应用。
2.1.1电源电路设计
TMS320F2812工作需要内核1.8V和I/O端口3.3V两种供电电压,选用正向低压降稳压器AMS-1117为DSP内、外核供电。AMS-1117具有可调输出和固定输出两种模式,固定输出电压档分为1.5V、1.8V、2.5V、2.8V、3.0V和3.3V等,输出精度可达1%,系统选用输出电压为3.3V和1.8V的AMS1117-3.3及AMS1117-1.8为DSP芯片供电。双稳压芯片供电电路如图1所示,AMS1117-3.3稳压芯片输入5V的直流电压输出3.3V的直流电压作为TMS320F2812的处理器供电电源,同时3.3V供电电压上电后,通过稳压芯片AMS1117-1.8的稳压后输出1.8V的内核供电电压,为DSP的内核供电,实现了双电压供电方式。
2.1.2系统时钟和复位电路设计
时钟的质量和精度直接关系到检测系统的测量精度和可靠性。本文选用30MHz有源晶振为DSP提供外部时钟信号,经过DSP的PLLCR设置锁相环的工作模式和倍频系数,输入5倍于时钟信号的乘法因子得到150MHz的内部时钟信号。为了使DSP能够在上电后自动加载FLASH中的程序,需要设计可靠的复位电路,如图2所示。电阻R、极性电容Cr和复位开关共同组成系统复位电路。当电源上电后,利用电容Cr的充电,\RS复位端维持低电平状态,DSP上电自动复位操作成功,复位后DSP程序从000h开始运行。
2.2温度检测电设计
监测系统主要对矿用高压电缆接线盒的内部接线端子进行温度测量,选用温度传感器AD590作为温度测量元件,测量时将温度传感器粘贴在电缆接线盒内部接线端子上,传感器输出信号经过LM358运算放大器和HCNR201光电耦合后发送给DSP芯片,温度检测单元电路如图2所示。AD590是美国AD公司研制的一种电流式集成温度传感器,这种器件在被测温度一定时,相当于一个恒流源,输出1?A/K正比于绝对温度的电流信号,具有较强的线性度和抗干扰能力。
2.3超温报警单元设计
监测系统超温报警单元由蜂鸣器和发光二极管组成,DSP的数字信号输出端口输出端和电阻、报警指示灯相连接,矿用高压电缆接线盒温度过高时DSP输出高电平,报警指示灯(发光二极管)闪烁,同时与蜂鸣器相连接的DSP端口输出高电平,三极管导通,蜂鸣器发出报警警报,提醒工作人员进行超温事故处理,同时设有复位电路,用于关掉报警信号。
三、结束语
本文矿用高压电缆接线盒温度测试问题进行研究,设计了基于DSP的温度实时监测系统,重点设计了DSP最小系统、温度监测单元和超温报警单元。监测系统具有结构简单、稳定性能高和实时性好等优点,为煤矿井下高压接线盒状态监测与评估技术的发展奠定基础。
参考文献
[1]国家安全监管总局国家煤矿安监局.关于进一步加强煤矿安全监管监察工作的通知.〔2012〕130号;
摘要:消防设备电气配线设计矿物绝缘电缆
火灾发生时消防设备的正常运行对于人员平安疏散、控制火势蔓延、减少火灾损失有十分重要的功能。因此消防设备的电气配电线路配电系统应满足可靠性、耐火性、平安性、有效性、科学性的要求,以保证火灾时消防设备供电不会中断,保障人身平安,保证供电持续时间,确保供电质量并力求系统接线简单,投资省、运行费用低。
1.消防设备电气配线设计
在对消防电气配线的具体设计过程中,以《火灾自动报警系统设计规范》为主,以《高层民用建筑设计防火规范》、《民用建筑设计防火规范》为辅,同时兼顾《民用建筑电气设计规范》,根据不同消防设备其配电线路应选用耐火配线或耐热配线。消防设备的耐火配线是指按照时间-温度标准曲线对消防设备配电线路进行试验,从受火的功能起,到火灾升温达到840℃时,在30min内仍能继续有效供电的线路;消防设备的耐热配线是指按照时间-温度标准曲线的1/2曲线,对消防设备配电线路进行试验,从受到火的功能起,到火灾升温达到380℃时,在15min内仍能有效供电的线路。建筑消防设备配电线路的具体防火设计,应将变配电所低压母线、应急母线和动力电缆出线到具体消防设备最末级配电箱的所有配电线路作为耐火耐热配线的考虑范围,并分不同系统考虑各自消防设备的耐火耐热配线方案。
1.1火灾自动报警系统配电线路
火灾自动报警系统的报警线路可采用耐热配线,火灾自动报警系统的联动线路则应采用耐火配线,其目的是保证在火灾自动报警系统瘫痪状态下,消防控制中心仍然能够通过手动操作起动各消防设备。
1.2消火栓泵、喷淋泵等配电线路
消火栓系统加压泵、水喷淋系统加压泵、水幕系统加压泵等消防水泵的配电线路包括消防供电电源干线和各水泵电动机配电支线两部分。水泵房供电电源应为双电源末端切换,一般由建筑物变配电所低压配电柜直接提供和自备发电机房供给。消防供电电源干线应采用耐火配线,水泵电动机配电支线路可采用耐热配线,条件许可时也可采用耐火配线。
1.3气体、卤代烷等灭火设备配电线路
气体、卤代烷等灭火设备控制盘的电源由双电源末端切换供给,电源线-控制盘-电磁线圈-起动回路配电采用耐火配线,其他线路(包括探测器、报警器、指示灯、电动关闭门窗等)可选用耐热配线。。
1.4防排烟系统的装置配电线路
防排烟系统包括送风机、排烟机、70℃防火阀、280℃防火排烟阀等各类阀门以及送风口、排烟口等装置。它们一般布置较为分散,其配电线路防火既要考虑供电主回路,也要考虑联动控制线路。防排烟装置配电线路应选用耐火配线,联动和控制线路也应采用耐火配线。另外,根据规范要求,分支线不得穿越不同的防火分区。
1.5防火卷帘门、常开防火门配电线路
在火灾初期,防火卷帘门起着人员疏散、防止火灾蔓延的功能,所以配电线路应可靠。一般情况下,防火卷帘门电源引自建筑各楼层或同一防火分区内带双电源切换的配电箱,经分配后向各防火卷帘门专用控制箱(该控制箱设在防火卷帘门顶部)供电,供电方式采用放射式。当防火卷帘门水平配电线路较长时,应采用耐火配线,以确保火灾时仍能可靠供电并使防火卷帘门有效动作,防止火势蔓延。
常开防火门配电一般应采用耐火配线,以确保火灾时常开防火门可靠关闭,防止火势蔓延。
1.6消防电梯配电线路
消防电梯电源必须采用专线。工程设计中消防电梯配电一般由高层建筑的变配电所低压配电柜敷设一路专线至位于顶层的消防电梯机房,另一路专线由地下室自备发电机房引来,线路较长且路径复杂。为提高供电可靠性,消防电梯配电线路应采用耐火配线。
1.7火灾应急照明线路
火灾应急照明包括疏散指示、火灾事故照明和备用照明。疏散指示采用带蓄电池的应急指示标志,火灾事故照明采用带蓄电池的应急照明灯,备用照明则利用双电源切换来实现。高层建筑的火灾应急照明线路应采用耐火配线。
1.8消防广播、通信等配电线路
火灾事故广播、消防电话、火灾警铃等设备的电气配线可采用耐热配线。
根据国内外电线电缆产品的发展和对电气线路的保护方式的探究结果,对消防设备的耐火配线应优先选用矿物绝缘电缆,也可选用封闭式桥架等有效保护的耐火电缆或穿金属管并埋设在不燃烧体结构内,且保护层厚度≥30mm。耐热配线可选用摘要:线路明敷时,采用穿金属管或金属线槽保护并应用防火涂料提高线路的耐火性能;当采用阻燃和耐火电缆时,可不穿金属管保护,但应敷在电缆井内或电缆沟内或吊顶内有防火保护办法的封闭式线槽内,但当和延燃电缆敷设在同一竖井时,二者之间应用耐火材料分隔开。消防控制设备工作接地应采用专用的25mm2以上铜芯控制干线。
2矿物绝缘电缆用于消防设备电气配线的探索
2.1矿物绝缘电缆简介
矿物绝缘电缆(MineralInsulatedCables),是由铜芯、铜护套和氧化镁绝缘等全无机物组成的电缆。因其采用独特的制造方式,使氧化镁绝缘材料高度紧密地压实在电缆的无缝铜护套中,和铜芯、铜护套共同形成密实的一体,因而具有良好的耐火、耐高温、载流量大、防水、耐腐蚀、耐机械损伤、耐辐照及电磁相容性、美观大方等特征,同时该电缆在火灾条件下不会放出任何烟雾、卤素及有毒有害气体。同时矿物绝缘电缆的铜护套可作为地线使用,和其它类型相比可减少一根芯线,只需明敷,轻易安装,加之使用寿命长,可以预期在消防设备的电气配线中采用矿物绝缘电缆会产生良好的经济效益和社会效益。
2.2国外标准规范对矿物绝缘电缆用于消防设备电气配线的规定或推荐情况
由于矿物绝缘电缆可以从根本上解决电气线路的平安新问题,国际上很多国家的有关建筑物标准和规范对在哪些场合和部位一定要用矿物绝缘电缆,在哪些场合或部位推荐使用都有具体明确的规定。下面粗略介绍一下国外标准规范对矿物绝缘电缆用于消防设备电气配线的规定或推荐情况摘要:
2.2.1英国国家标准中的规定或推荐情况
(1)BS5839建筑物的火灾探测和报警系统(Firedetectionandalarmsystems)第一部份系统设计、安装和维护的实施法规(Part1Codeofpracticeforsystemdesigninstallationandservicing)
(2)BS5266-1摘要:1999应急照明第1部份摘要:除影院及用于娱乐的非凡建筑物外的其它建筑物的应急照明(Emergencylighting–Part1摘要:Codeofpracticefortheemergencylightingofpremisesotherthancinemasandcertainotherspecifiedpremisesusedforentertainment)
2.2.2澳大利亚国家标准中的规定或推荐情况
(1)线路规则(Wiringrules)
(2)AS2941-1995固定消防装置—泵站系统(Fixedfireprotectioninstallations–Pumpsetsystems)
(3)AS2293建筑物中应急疏散照明(Emergencyevacuationlightinginbuildings)第1部份摘要:安装要求(Part1摘要:Installationrequirements)
2.2.3美国国家标准中的规定或推荐情况
(1)NFPA70国家电气法规(NationalElectricalCode)
在上述标准中,都将矿物绝缘电缆列入作为规定或推荐选用的菜单中,而且规定在火灾时间较长的情况下使用的,则应选用矿物绝缘电缆,假如选取用其它电缆则必须埋设在建筑物的不燃烧结构中或用隔板将电缆和其它重大危险区域隔开,并应有附加的机械保护。
2.3国内对矿物绝缘电缆的生产和探究情况
我国对矿物绝缘电缆的探究开发较晚,1968年上海电缆探究所开始探究用于反应堆堆芯测量用探测电缆,70年代开始探究电力用配线电缆;80年代初沈阳电缆厂六分厂开发了小规格的电力用配线电缆和加热电缆,80年代中期北京东风电缆厂从意大利LMI公司引进全套矿物绝缘电缆生产技术革新和部份设备,因种种没有正式生产并将设备转给哈尔滨电缆厂,也没有投入生产,80年代末上海电缆探究所将矿物绝缘电缆生产技术转让给湖州久立耐火电缆有限公司[现改名为泰科热控(湖州有限公司)形成生产线,在1996年国家计委将矿物绝缘电缆列为“国家重大科技成果产业化项目”后引进国外关键生产设备,建成规模较大生产水平较高的生产车间,90年代中后期江苏等地的几家电缆厂也建成有生产车间。
为了了解矿物绝缘电缆在高暖和实际火灾中能否对消防设备保持良好的供电能力,参照国外的试验探究,公安部四川消防科学探究所和有关电缆企业共同进行了电缆短样随炉升温的耐火试验和上述电缆用不同敷设方式的模拟实体火灾电缆特性试验探究。
(1)电缆短样试验
电缆短样随炉升温试验样品分别为摘要:矿物绝缘电缆、普通聚氯乙烯电缆、阻燃电缆、隔氧层阻燃电缆、耐火电缆。把电缆同时并排的放在烧结炉中加热升温,电缆的两端伸出炉外,分别连接电源和指示灯用于观察失效温度和时间。从试验结果中可以得出,在高温或火灾情况下,一般电缆(包括耐火电缆、隔氧层电缆),在明敷或穿管保护下都满足不了消防系统供电线路的平安要求,只有矿物绝缘电缆,在明敷的情况下就可以完全解决新问题。
(2)模拟实体火灾试验
参照英国消防探究所的实体火灾试验方案,公安部四川消防科研所的有关电缆企业共同对上述电缆分别选用五种敷设方式(支架裸敷、支架穿管明敷、防火桥架内明敷、防火桥架内穿管、穿管埋墙暗敷)进行了模拟实体火灾试验探究。
探究结果表明摘要:在1小时的实体火灾试验中,电缆的耐火性能,明敷矿物绝缘电缆优于其它类型的电缆,并能保持对电气设备的正常供电能力;普通聚氯乙烯电缆五种敷设方式全部失效;阻燃电缆和隔氧层阻燃电缆除穿管埋墙暗敷外全部失效;耐火电缆除有防火桥架保护和埋墙暗敷外全部失效。矿物绝缘电缆还能够在火灾中承受试验重物坠落的冲击,能够经受喷淋水的冲击,能再次正常通电启动相关供电设备,完全能够在火灾条件下保持规定时间的消防供电。另外普通电缆、阻燃电缆、阻燃隔氧层电缆及耐火电缆,在明敷及穿钢管并施防火涂料保护时,其持续供电时间均未达到30分钟,这对于消防控制室、消防水泵、消防电梯、防排烟设施等供电时间较长的消防设备供电是不利的。
根据以上探究结果和参照国外标准,我国对《高层民用建筑设计防火规范》进行了修订,《高层民用建筑设计防火规范》中“消防电源及其配电”一节已修订为摘要:
9.1.4消防用电设备的配电线路应符合下列规定
9.1.4.1当采用暗敷设时,应敷设在不燃烧体结构内,且保护层厚度不宜小于30mm。
9.1.4.2当采用明敷设时,除矿物绝缘类不燃性电缆外,应采用有防火保护的金属管或封闭式金属线槽保护。
9.1.4.3当采用阻燃和耐火电缆时,可不穿金属管保护,但应敷在电缆井内或电缆沟内或吊顶内有防火保护办法的封闭式线槽内。
9.1.4.4对供电时间要求较长的消防设备供电线路,当采用明敷设时,宜采用矿物绝缘电缆,或封闭式防火桥架等有效保护的耐火类电缆。
相信通过这次对《高层民用建筑设计防火规范》的修订和实施,我国对矿物绝缘电缆的使用会有一个很大的发展,从而为在火灾情况下消防设备的正常运行、人员的疏散和营救提供有力的技术保障。
参考文献
1.蒋永琨等高层建筑消防设计手册上海同济大学出版社1995
关键词电缆;故障;原因;处理
中图分类号TD623文献标识码A文章编号1674-6708(2011)49-0147-02
井下常用电缆分为三类,即铠装电缆、塑料电缆和矿用橡套软电缆。铠装电缆和塑料电缆主要用于井下干线式供电或向固定、半固定设备供电,矿用橡套软电缆主要用于向移动设备供电。
1常见故障的原因及预防措施
在井下供电中,常见的电缆故障有相间短路、单相接地和断相等故障。
1.1电缆相间短路故障
相间短路故障是电缆常见故障之一,其原因主要有以下几方面:
1)制作铠装电缆接头时,工艺不符合要求,三叉门处的绝缘受到损伤,接线盒内的绝缘填充物老化、开裂、受潮;低压橡套电缆受到严重撞击,接线盒内的接线有毛刺,遭遇淋水、接线头虚接产生高温或电火花而发生短路故障。
预防措施:严格接线工艺,提高连接处密封与绝缘,防止水气侵入。加强巡视,避免任何外力冲击损伤。
2)电线的铠装带裂开,铅包有裂纹;低压橡套电缆出现降低相间绝缘性能的破口。此时,如潮气侵入,会发生短路故障。
预防措施:加强维护,避免机械伤害,敷设和搬移动过程中,弯曲半径不应小于最低允许弯曲半径值。
3)铜-铝、铝-铝连接头,压接工艺不当,质量不合适,造成接触不良、阻值增大和温度过高而出现短路故障。
4)库存电缆时间长,两端铅封不严,绝对受潮,不做试验直接投入运行,导致出现短路故障。
预防措施:切除受潮部分,先做耐压试验,试验合格后方可接入运行。
1.2单相接地故障
《煤矿安全规程》规定:严禁井下配电变压器中性点直接接地;严禁由地面中性点立接接地的变压器或发电机直接向井下供电。因此,井下供电系统是一个中性点不接地的供电系统。单相接地故障也叫单相漏电接地故障,是井下常见故障。
单项接地故障事故原因主要有:机械损伤破坏绝缘,电缆接线工艺粗糙,有毛刺,接头脱落碰及外夫,热补或冷补质量不合格,线路上出现“鸡爪子”、“羊尾巴”等。
预防措施:加强维护管理,消除隐患;严格按《煤矿安全规程》要求证行敷设、吊挂、连接。
1.3电缆断相故障
电缆主芯线断开称为断相,也杨;做断线。其主要原因有:被采掘运输机械刮断,接线端子处虚接而被烧断,爆破崩断电缆。预防措施:加强维护、管理。
2故障性质的判断及处理
2.1电缆故障性质的确定
电缆线路出现故障,应首先判明故障的性质。电缆故障除了因缆芯之间或缆芯对外皮间的绝缘破坏形成短路、接地和因缆芯的连续性受到破坏形成断线和不完全断线两种情况外,有时也发生兼有两种情况的混合式故障。通常以第一类故障居多,其小短路接地又有高阻和低阻之分。判断故障的性质可以从保护跳闸的情况分析,可以用测量的方法,也可以从故障线路的状态进行观察和分析。
1)相间短路故障的判定
若发生相间短路,则会出现短路保护装置熔件被烧断或过电流继电器动作,使开关跳间;可以用兆欧表(摇表)测量各芯线之间的绝缘;也可以手感由于短路电流造成电缆的发热,查找是否有短路崩破电缆护套的爆破点。短路的出现往往伴随着绝缘烧焦气味,据此可判定是否是短路故障。
2)单相接地故障的判定
发生单相接地故障,首先表现为漏电继电器动作馈电开关跳间或接地监视装量、漏电闭锁装置动作,并显示相应的指示信号,也可使用兆欧表测量各芯线对地的绝缘电阻值或用其他测量方法判定是否单相接地。
3)断相(断线)故障的判定
断相有断单相、断的相和断三相三种。发生单相断线故障时,若用电设备是电动机,它将造成单相运转,转矩明显减小,运转声音不同于正常运转之声,此时过负荷保护装置和断相保护装置动作。发生两相和三相断线故障时,电动机自然会停止运转。馈电开关或起动控制设备在断相保护装置的作用下,能够自动跳闸。也可以用兆欧表测量。若用万用表测量时先对电缆放电,然后测量各芯线的通断,不通时即为断相。
2.2电缆故障的处理
在进行电缆故障的探测和处理过程中,应注意的问题有以下几点:
1)电缆故障发生后,吕先要根据故障现象和状态,初步判明故障类型,并及时向个管部门或矿调度室汇报。组织有关人员进行处理。若遇非选择性漏电继电器动作,其收视的供电线路为多条敷设式线路,尚不能确定为哪条线路漏电,汇报时应将这儿条线路一并汇报清楚;
2)当电缆故障引起火灾时,应立即切断电缆的电源,并挂标志牌,同时不失时机地进行灭火救灾。若火势蔓延较快不能立即扑火时、应马上通知附近人员撤离危险区,并向队、区(科)、矿汇报,共向来取灭火措施或按矿救灾计划进行灭火;
3)若遇掘进工作面局部通风机线路出现故障,比立即向矿调度、机电主管部门汇报,并及时通知该工作面人员撤出;
4)当采用地面测试的方法(直流电桥法、临时接线测量、低压脉冲法、音频感应法等)探测时,应有总工程师批示的安全措施。其内容主要包括在进风向的巷通风流中进行探测;瓦斯浓度必须在1.0%以下时,方可进行;对并下采掘作由及附近巷道,处用普通型便携式电气测量仪表探测时,必须由瓦斯检食员检查该地点的瓦斯含量,只有其瓦斯浓度在1.0%以下时,方可使用。当确定了故障性质和故障点后予以处理时,必须将故障电缆和其他电缆隔离开。
参考文献