起点作文网

百分数应用题(收集5篇)

时间: 2026-02-12 栏目:办公范文

百分数应用题篇1

一、解释现象

在学生初步感知百分数的基础上,教师安排了四个步骤让学生充分体会、感悟百分数:说说生活中哪里见过百分数,找出所带的百分数独立思考其含义,小组交流,说出老师准备的百分数的含义。不同形式的百分数大大丰富了学生的理解,这一片段的教学,教师浓墨重彩,用时约23分钟。关键是学生能从日常生活素材中发现数学知识,并运用所学知识加以解释,足以说明学生对新知有了较好的掌握。尤其值得一提的是,无论小组交流,还是集体汇报,学生都能进行有条理的思考,并清楚地表达自己的思考结果。

二、解决问题

这里提及的解决问题,主要关注教师新授课结束后,学生对问题的解决能否主动自觉、方法多元。

百分数应用题篇2

一、抓住关键,探索规律。

有学者研究发现:“学生有时解题困难,是因为不善于从整体上把握题目中的数量关系,未能把解题模式抽象成为一种思维策略。”每一个学习内容都有其关键之处。如果能恰到好处的把握,学生对于这一学习内容的掌握和运用,自然就会顺畅多了。

1、抓关键词。

抓表示单位“1”的词,即标准量。怎么找单位“1”的量?

特征(1):是(或占、相当于)谁的百分之几。以谁为标准,谁就是单位“1”的量。如:现价是原价的90%,原价是单位“1”的量。

特征(2):比谁多(或少)百分之几。跟谁比,谁就是单位“1”的量。如:买来的篮球比足球少20%,足球的个数就是单位“1”的量。

特征(3):若是求合格率、含糖率等百分率。先理解这些百分率的含义,自然就会找到单位“1”。如:出勤率为95%就是指出勤人数占总人数的95%。总人数就是单位“1”的量

特征(4):若上述特征不明显,就要加以理解。如:一件商品原价是60元,降价10%。意思是跟原价比降了10%,单位“1”的量就是原价。

2、抓关键句。

百分数应用题有一个特点:一个数量对着一个分率,这种关系叫做量率对应关系。只要紧紧抓住含有百分数的那句话,分析出哪个量对应哪个分率,难题就会容易多了。如:男生人数比女生少60%,要让学生明确把女生人数看成100%,男生人数就与(1-60%)对应。

3、探索规律。

《数学课程标准》指出建立模式,探索规律是数学学习的重要内容,也是国际数学课程发展的必然趋势。根据百分数应用题各数量之间的内在联系,促进学生对基本题型的掌握,探索解题的一般规律。

形式(1):求一个数是另一个数的百分之几。思路以另一个数为单位“1”,一个数占了它的多少。即一个数÷另一个数。

形式(2):求一个数比另一个数多(或少)百分之几。指两数的差额占了多少,即多(或(少)的量÷另一个数(即单位“1”);也可以是求出一个数所占的分率,再与单位“1”比较。以上两种形式归一类。

形式(3):已知单位“1”的量,求另一分率相对的那个量。例:某厂去年生产化肥2500吨,今年比去年增产15%,今年生产化肥多少吨?

去年产量2500吨是单位“1”。先求出增加的产量,即2500吨的15%,再加上去年的产量,算式:2500×15%+2500。

先求出今年占(1+15%)。2500吨的(1+15%)是多少?算式是:2500×(1+15%)。

形式(4):已知分率相对的那个量,求单位“1”所对的量。例:一桶油倒出总质量的40%后,还剩15千克。

顺思维:设总质量为X,它的(1-15%)是15千克。,算式X×(1-15%)=15

逆思维:15千克就是(1—40%)=60%,两者相对应,照这样计算,多少千克就是100%?算式是:15÷60%×100%即15÷60%,其实这是归一应用题。(通过反馈,90%的学生喜欢找对应关系来求单位“1”所对的量)。

这是三类分数(百分数)应用题基本的思路,必须让学生理解掌握,以此来提高分析数量关系的能力。

二、导法得当、学中创新。

1、材料呈现——灵活性

新课标指出:内容呈现方式应采用不同表达方式,以满足多样化的学习需求。因此应用题不一定要以书本例题原摸原样呈现。我就尝试以下几种方法。

(1)扩句。A.一堆煤的75%是60吨,这堆煤是几吨?列式:60÷75%。

B.一堆煤运走它的75%后,剩下是60吨,这堆煤是几吨?列式:60÷(1-75%)。

C.一堆煤运走它的75%后,再运走10%,剩下是60吨,这堆煤是多少吨?列式:60÷(1-75%-10%)。

学生通过比较观察,更加清楚解决百分数应用题找准量率对应是很关键。

(2)分句。

汽车上有男乘客45人,假如女乘客人数减少10%,恰好与男乘客人数的60%相等,汽车上有女乘客多少人?此题如果一步到位的呈现,大多数学生是非常难以理解的。我就采用分句呈现。

A.汽车上有男乘客45人,男乘客人数的60%是多少人?算式:45×60%。

B.女乘客人数减少10%是多少?算式:1-10%。

C.男乘客的60%与女乘客减少10%相等。也就是男的60%与(1-10%)相对应。学生就能列出算式:45×60%÷(1-10%)。

(3)画图。(见右图)单位“1”

修一条公路,第一周修了全长75%

的35%,第二周修了3600米,这时35%

两周修的总米数距全长的75%还有

400米。这条公路有多长?用线段

图展示,学生很快弄清量率之间的对3600米400米

应关系,从而找到解决问题方法。多长?

此外还有动画呈现、情景呈现等。帮助学生理解、掌握知识,进一步提高他们的解题能力。

2、解题思路——多向性。

在《大纲(试用)》的说明中提出:要引导学生分析数量关系,掌握解题思路。这实际体现了培养学生掌握解题的方法和策略。为了使之更加落实,就要培养学生的多向思维,拓展学生的思维空间,让学生掌握运用多种方法解答应用题,冲破单一的局限性,提高解决问题的能力和速度。如:某厂女工人数是男职工的37、5%,已知男工比女工多40人。女职工有几人?

方法(1):以男工人数为单位“1”的量,男工人数比女工多的40人就是(1-37、5%),两者相对应,求出男工人数,列式:40÷(1-37、5%)。再求出女工人数40÷(1—37、5%)—40。

方法(2):按上述求出男工人数,再按男工的37、5%是多少?求出女工人数40÷(1—37、5%)×37、5%。

方法(3):37、5%=3∕8,把男工平均分成8份,女工是3份,男工比女工多5份,求出一份是几人?40÷5=8(人)。女工有3份,所以女工人数是40÷5×3

方法(4):设女工为x人,男工就是40+x。根据女职工人数是男职工的37、5%,得出x÷(40+x)=37、5%。

3、练习设计——有效性。

练习的设计不仅要有一定的量,更要突出练习的综合性,灵活性和有效性,并重视培养学生解决实际问题的能力。因此复习百分数应用题时,在教学设计中我注意挖掘材料富含的信息量,精心设计练习,把练习题目自然融合于数据分析之中。以下介绍几种练习设计:

(1)对比性的练习。

把下列的题目与算式用线连起来。

果园里有梨数1000棵,占总数的60%,共有果树几棵?1000×(1-60%)

果园里有梨数1000棵,桃数比梨数少60%,有桃树几棵?1000÷60%

果园里有果数1000棵,梨数占60%,有梨树几棵?1000×(1+60%)

果园里有梨数1000棵,比桃数

多60%,有桃树几棵?1000÷(1+60%)

果园里有梨数1000棵,桃数比梨数多60%,有桃树几棵?1000×60%

果园里有梨数1000棵,比桃数少60%,有桃树几棵?1000÷(1-60%)

(2)开放性的练习。

由学生自主选择条件,自己提出问题并解决问题。例:出示铅笔盒每只18元、一件上衣200元、一张门票30元、降价10%、增加10%。

由学生设计解题方案。例:校足球队要买一些足球,采购员看了甲、乙、丙三家商店,单价都是25元,但促销方式不同。甲店:买十送一。乙店:打八折。丙店:满100元,返还现金20元。请你帮采购员算一算,怎样买比较合适?

(3)层次性的练习。

A.图书馆里有一些科技书和文艺书共200本,其中科技书占80%,文艺书有多少本?

B.图书馆里有一些科技书和文艺书,其中科技书200本,它的80%,正好是文艺书的25%,那么文艺书有多少本?

C.图书馆里有一些科技书和文艺书,其中科技书占80%,如果用文艺书换走科技书200本,那么科技书占全部的60%,问原来科技书有多少本?

练习的设计还要与学生感兴趣的事、熟悉的生活情景相联系,让学生可以从多种角度去思考,来培养学生运用数学思维方式来分析现实生活的意识和能力。

(4)成语性的练习

用我们所学的百分数来解释这几个成语的意思:百发百中、百里挑一、十拿九稳、大海捞针。

三、指导验算,养成习惯。

小学生由于年龄小、思维直观,对题目的解答是否正确较难作出判断,审题、计算时常会出现粗心大意,加上百分数应用题计算很繁琐,很少有人进行分析、验算。种种原因都将直接导致解题的准确性。由此,教会学生验算和估算的方法,对培养学生良好的学习习惯,提高学生解题准确率是很有必要的。以下介绍几种验算方法:

1、交换条件和问题。

一堆沙子,第一次运走40%,第二次运走30%,还剩48吨。这堆沙有多少吨?列式:48÷(1-40%-30%)=160(吨)。以160为条件,算出第一次运走160×40%=64(吨),同理算出第二次运走48吨,那么160-64-48=48(吨)。说明答案正确。

2、找量率等量关系。

以上题为例,根据剩下48吨就是30%,两者对应,那么第二次运走也是48吨,由此10%与48÷3=16(吨)对应,40%与16×4=64(吨)对应。那么64+48+48=160(吨)答案正确。

3、心理推导检测法。

淘气第一天看了故事书的20%,第二天看了全书的40%,两天共看了60页,这本故事书有几页?列式:60÷(20%+40%)=100(页)。心理验算:看了60页是(20%+40%)=60%,那没看的40%就是40页。所以总页数是100页。

通过验算既能使学生发现出现的错误、遗漏,及时进行纠正,以此提高解题

百分数应用题篇3

关键词:百分数应用题小学数学教学

百分数是小学数学教学中既抽象又较实用的一类知识。它的概念、法则、性质等,对小学生来说,仍是比较抽象的知识,是较难理解的。尤其是关于百分数的应用题,它牵涉面广,解答过程又易于混淆,学生学习这一单元总是感到棘手,教学质量很不理想。如何指导学生掌握知识的内在联系,揭示解答问题的规律,必须根据百分数的意义和它演绎出来的几种不同数量关系的应用题,从学生实际出发,选择恰当的教学方法,显得非常重要。

一、抓住知识之间的内在联系,采用比较的方法,启发学生运用已有知识解答新的问题。

小学数学教材的编写,具有很强的系统性,它呈现螺旋式循环上升,前面的知识是学好后面知识的基础,后面的知识是前面知识的发展。在教学过程中,必须根据教学大纲,认真剖析教材,启发和引导学生根据新、旧知识的内在联系进行研究和分析,寻找解答问题的方法和途径。在教学过程中采用对新、旧知识的对比进行教学有时能取得事半功倍的效果。

如:“求一个数是另一个数的百分之几?”“求一个数的百分之几是多少?”“已知一个数的百分之几是多少,求这个数。”这三种类型的应用题与分数中“求一个数是另一个数的几分之几?”“求一个数的几分之几是多少?”“已知一个数的几分之几是多少,求这个数。”这三种类型的应用题的计算方法是基本相同的。例如:教学“五年级有学生180人,达到《国家体育锻炼标准》的有108人,占五年级学生数的百分之几?”时,则先可出示引例,将上题中的“百分之几”改为“几分之几”,让学生说出解题方法,计算出结果,然后再出示上面例题,让学生说说两道题有什么不同的地方,从而区分出“几分之几”与“百分之几”两者之间的差异,使学生懂得“求一个数是另一个数的几分之几?”与“求一个数是另一个数的百分之几?”两类题目的计算方法是基本相同的。如果题目要求百分数,就必须把一个数除以另一个数所得的商化成百分数。

二、根据各类题型的数量关系,用数理指导计算,深入浅出,击破难点,掌握规律,解决问题。

在教学百分数的三种类型题时,应根据题型特点,抓住问题的本质,用清晰精确的语言和图示,深入浅出,逐步加深理解,击破难点。讲解过程中注意启发学生积极思考,引导学生抓住本质,揭示规律,分析问题,解决问题。

如教学例题“一个工厂由于采用了新工艺,现在的成本是37.4元,比原来降低了15%,原来每件产品是多少元?”时,先出示引例:“一个工厂由于采用了新工艺,现在每件的成本是37.4元,相当于原来的85%,原来每件成本是多少元?”让学生计算后,再回过头来看例题,帮助学生理解题意,找出37.4元相对的百分率,对应的百分率一找出,问题就迎刃而解了。

三、分类归纳,集中比较,加深理解,巩固所学知识。

各类题型授完后,进行综合复习时,通常有些学生对所学的各类型题分辨不清,为了加深理解和巩固所学知识,可将应用题进行分类,归纳如下。

1.某学校男生600人,女生400人,女生占男生的百分之几?

男生占女生的百分之几?

2.某工厂有工人500人,其中男工人占全厂工人总数的60%,男工人有多少人?

3.某厂有男工人300,占全厂总人数的60%,全厂有工人多少人?

4.某专业户去年早造亩产500千克,今年比去年增产25%,今年早造亩产多少千克?

5.某专业户今年早造亩产600千克,比去年增产20%,去年早造亩产多少千克?

6.某专业户去年早造亩产500千克,今年早造亩产625千克,今年比去年增产百分之几?

对以上各题,可引导学生比较、分析,归纳出三种类型,并指导列式计算。通过对比,学生加深了理解,巩固了百分数各类型应用题的解题步骤和方法。

四、突出重点,抓住关键,指导学生自编应题。

为了深化知识,牢固掌握知识,在授完百分数应用题进行复习题,应突出应用题中标准量,对应分率和对应量之间的数量关系和解题规律这个重点,抓住“找出与量相对应的分率”这个关键,引导学生把不完整的应用题补充提出问题或自编应用题。如“一堆货物200吨,第一次运去总数的五分之一,第二次运去总数的25%,……?”,指导归纳出下列几种情况:

(1)“……”两次各运多少吨?

(2)“……”两次共运多少吨?

(3)“……”第一次比第二次少运多少吨?

(4)“……”第二次比第一次多运多少吨?

(5)“……”还剩多少吨没有运走?

把问题补充完整后,便可根据各问题的特点,归纳指出:已知标准量与对应的分率,用乘法计算,“与量对应的分率”是解答这类问题的关键,没有直接告诉的题目,应先求出“与量对应的分率”。再引导学生用下列条件自编应用题。

(1)我校有教师60名,其中女教师占60%,……

(2)某工厂前年每小时生产400个零件,由于采用新技术,今年比前年每小时多生产80%,……

百分数应用题篇4

一、对于常见易错的基础题,指导学生学会抓关键词

百分比的应用题中涉及至少两个变量的关系。既然涉及的关系是变量间的比例,那么抓准涉及两个变量关系的联系词,对于题意的理解尤为重要,也是解决问题的钥匙所在。相当多的学生做错问题,就是在审题过程中没有注意关键词或没有抓住关键词,对于关键词视而不见,对于谁是比较的标准量、谁是被比较的量没有认真推敲,造成比例关系出错。

试看下列这组典型填空题:①90kg是2吨的()%;②比()千米少20%是50千米;③()小时比40小时多30%;④9.5吨增加()%是1吨。

学生常见的错解:①2÷90×100%;②50÷20%;③40×30%;④1÷9.5×100%。

如果稍作概括,发现比例应用题的叙述中最典型的句式是:“……甲……比……乙……(多、少、长、短、重、轻……)(……)%”,教师在课堂教学中就应该训练学生掌握这个典型句式的含义,明确句式中的关键词“比”,点出紧跟“比”字的对象“乙”是被视为比较标准的事物,而“甲”则是被比较的对象,其对应的量被视为标准的对象为名义的“1”、“100%”,如果两者的比通过除法求得,那么视为标准的乙物体对应的量必须作为除数,被比较的对象甲对应的量则应作为被除数。这里,注意句式“……甲……比……乙……(多、少、长、短、重、轻……)(……)%”的若干变形说法,如:“……甲……是……乙……的()%”,“……甲……(增加、减少)(……)%……是……乙……”。教师在新授课教学中应该通过生活中的实例逐一让学生通过学习掌握这些典型句型的含义,并明白其中的这些关键词在理解题意中的作用,培养学生抓关键词的习惯与意识。这也有力地促进学生由形象思维逐步适应向初级抽象思维的转变,这是符合小学高年级学生的心理年龄特征的。

二、对牵涉两个以上百分比关系的应用题,指导学生分清几类百分比关系

第一类,同一个量连续变化两次。在同一个量连续两次百分比变化的问题中,学生容易把连续变化的两次误认为是独立变化的,进而误以为第二次变化的基准量(即视为100%的那个量)就是第一次变化前的基准量,极易认为总的变化百分比值就是两次百分比的和。

典型例题:一种汽车先降价10%,后来经过市场调研后发现,销量可望再上一个台阶,又继续降价10%,加大促销力度,现在的价格只相当于原价的几折?错解:100%-10%-10%=80%。剖析:此类问题学生常见错解的原因在于认为连续两次降价的百分比之和就是总的降价结果,而没有注意到经过第一个百分比变化后的量已经成为第二次百分比变化的新的基准量。这样,上述问题的解法就应当是:1×(100%-10%)×(100%-10%)=81%。

第二类,涉及同一个计算量的另外两个量自身发生百分比变化。与同一个量相关的另外两个量自身分别发生百分比的变化时,这种变化往往是独立的,相当多的学生把它们混为一谈,没有意识到涉及这两个量的百分比在代入计算时,应该直接参与发生变化的这两量的计算过程。当然,要注意区分“和”与“积”这两类问题。

典型问题一(和类问题):商店出售两件工艺品,玩具笔和玩具小笔刨,其中,小笔刨售价8元,玩具笔售价4元,后来做了调整,笔刨涨价10%,笔降价10%,如果笔刨和笔是成对出售的,问:顾客购买时的单价如何变化?常见错解:因为笔刨涨价10%,笔降价10%,所以成对出售时总的价格变化的百分比为10%-10%=0;(8+4)×(100%+10%)×(100%-10%)。这两种解法错误的根源都在于没有意识到,虽然笔刨和笔是成对出售的,但是,笔刨和笔的单价变化确实是独立的,前述的两种解法将其混同于同一变量的前后两次变化。正确解答应为:8×10%=0.8,4×10%=0.4,所以涨价与降价百分比幅度虽然相等,但数量差值幅度不等,最终成对出售时,顾客购买时的单价变化为涨价0.4元。

典型问题二(积类问题):某超市本月出售的“南国”内衣数量比上月增加了10%,单价降低了10%,则本月营业额比上月变化百分之几?常见错解:营业额=数量×单价,所以,本月营业额比上月变化为10%×10%=1%;或1×(100%+10%)-1×(100%+10%)=0,相当于“数量与单价此消彼长”,实际营业额没有变化。其实这两种计算方法都是错的,这两个10%不能直接加减或乘除,应该作为数量与单价的值参与整体的运算,再求差值,所以,这个问题中求营业额的时候,既然出售的内衣数量与单价是乘积关系,因此实际营业额的变化百分比应该是做如下计算:1×(100%+10%)×1×(100%-10%)=99%,所以,营业额其实是下降了1%。

百分数应用题篇5

一、班级学生情况分析略。。。二、教材分析本册教材内容有:百分数、分数乘法、分数除法、分数四则混合运算和应用题,圆的周长和面积。百分数:从生活中引出,便于学生理解,从意义和写法到百分数和分、小数互化等。分数乘法:在学生学习整数乘法、小数乘法、分数的意义和性质的基础上学习的。分数除法:在学习整数除法和分数乘法的基础上教学的。分数四则混合运算和应用题:是在学生学习整数四则运算和分数四则运算的基础上教学的。稍复杂的分数应用题:教材在如何找出“1”的量作为重要内容。圆的周长和面积:在初步直观认识圆和学习过几种常见直线几何图形的基础上进行教学。三、教学目标1、理解百分数的意义,,能比较熟练地进行百分数和分数、小数的互化,能正确地解答“求一个数是另一个数的百分之几”的应用题。2、理解分数乘、除法的意义和分数乘、除法之间的关系。掌握分数乘、除法的计算法则,能比较熟练地计算分数乘、除法。3、能正确地进行分数四则混合运算。4、正确地解答分数、百分数应用题,提高学生灵活运用知识解答应用题的能力。5、掌握圆和扇形的特征,会用圆规画圆。掌握圆的周长和面积的计算公式,能够正确地计算圆的周长和面积。6、结合教材内容,对学生进行爱国主义教育和辨证唯物主义观点的启蒙教育,培养认真负责、工作细致的良好学习习惯。四、教学措施1、切实培养学生的计算能力。2、提高学生的解答应用题的能力。3、有意识地培养学生的逻辑思维能力。4、注意结合教学内容对学生进行思想品德教育。五、教学进度略。。。

    【办公范文】栏目
  • 上一篇:经营管理计划书(整理2篇)
  • 下一篇:思想政治教育的认识方法范例(3篇)
  • 相关文章

    推荐文章

    相关栏目