起点作文网

初三数学学习方法总结(收集11篇)

时间: 2024-12-03 栏目:工作总结

初三数学学习方法总结篇1

一、编织知识网络

我们学过不少知识点,做了不少题目,但是脑子里的印象却往往是模糊、孤立的,必须经过比较和整理,找出其中的联系和区别,把知识编织成网络,解题时就能胸有成竹,运用自如,形成解决问题的能力。

例如,怎样的四边形可以判定它是平行四边形、矩形、菱形、正方形?分别有几条可以考虑的思路?它们的边、角、对角线各有什么性质?对称性怎样?不妨总结一下。

二、挑战特色例题

我们平时的作业往往紧跟当天所学的知识,并不难解;但是,看看近几年的中考和各区县模拟考,你就会发现:现在对同学思维能力的要求已经大大提高,因此要认真研究一下,其中哪些知识学过了?我会解吗?有什么诀窍?

例如,已知关于x的方程x2+mx+2m-n=0根的判别式的值为零,且x=1是方程的根,求m、n的值。

如果分别看两个条件,能列出关于m、n的方程组,但运算很烦。如果从整体上分析题意,就发现x1=x2=1。1+1=-m,且1×1=2m-n;m=-2,n=-5。

三、补救解题失误

我们不要笼统地埋怨自己解题时“粗心”,而应该把做错的题目研究一下,是不是因为注意力不集中,顾此失彼;或者审题马虎,误解题意;或者记错概念、公式、定理;或者是心急慌忙,随意跳步骤,造成运算错误等等。

只要找到根源,就能做到不让同一错误出现第二次;只要把所有会做的题目都做对,就能取得优良成绩。

四、精选参考资料

为了提高解题能力,我们需要一二本适合自己情况的数学参考书,掌握以下要求,能帮助你进行选择:所选的题目具有典型性,不搞题海战术;内容富有启发性,解一道题就懂一点数学思想方法;难度适合本人接受能力,不要高不可攀;题目分层配置,由浅入深,循序渐进。

初三数学学习方法—尖子生必备

1.学会读数学书

初三学生普遍存在作业量大,考试增多,学习压力大的问题,攻欲善其事,必先利其器,因此学生还是要从最基本的做起,要学会看目录:预习时先学目录和内容提要,了解将要学习的知识的大致内容,然后再从头学习各个知识脉络,并在学习过程中要求先把书读“厚”,后把书本读“薄”。厚使学生对书本的各个部分有了详细的`了解,薄使学生对书本的整体和主旨有了更深刻的认识。课本从预习到复习至少要仔仔细细地看4-5遍,基础差的更要多看。预习中发现的难点,就是听课的重点。强调几点:第一、例题要重读。第二、概念要精读。第三、要点应巧读(学会点、划、批、问)。

2.学会听课

(1)听每节课的学习要求;

(2)听知识引入及知识形成过程;

(3)听懂重点、难点剖析(尤其是预习中的疑点);

(4)听例题解法的思路和数学思想方法的体现;

(5)听好课后小结。

3.学会思考研究

使学生达到融会贯通的境界。要让学生学会反思探究。比如可以要求学生建立纠错本或《备忘录》:把平时容易出现错误的知识或推理记载下来,争取做到找错、析错、改错、防错。整理易错的题。你需要一个笔记本将做错的题定期整理,定期复习,除了典型例题,还需要重视自己出错的题目。错题大约可以分两种:一种是自己根本不会做,因为太难了,没有思路;另一种是自己会做,因为粗心而做错。我觉得,最有价值的错题是第二类。因为粗心也有许多种,我们也要分析它。

为什么会错?有哪些经教训?下一阶段怎样学?

4.学会课后复习巩固及完成作业的方法

学生课后往往容易急于完成书面作业,忽视必要的巩固、记忆、复习。以致出现照例题模仿、套公式解题的现象,造成为交作业而做作业,起不到作业的练习巩固、深化理解知识的应有作用。

每天先阅读教材,结合笔记记录的重点、难点,回顾课堂讲授的知识、方法,同时记忆公式、定理。然后独立完成作业,解题后再反思。在作业书写方面也应注意“写法”指导,要求学生书写格式要规范、步骤要完整、条理要清楚。

列出相关的知识点,出重点、点,列出各知识点之间的关系,这相当于写出总结要点;在此基础上有目的、有重点、有选择地解一些各种层次、类型的习题,通过解题再反馈,发现问题、解决问题。最后归纳出体现所学知识的各种题型及解题方法。应该说学会总结是数学学习的最高层次。

如何学好初三数学

首先,对于课本,要做到三习:预习、练习、复习

每堂新课之前,做到先预习,特别要把难点或不懂之处用彩笔划出,以便上课时更加注意。预习是学习每一科目都必须做到的。每节内容后面的练习自己可以先做一做,做到看懂70%的新内容,会做80%的练习题。每节新内容学完后,我们要按照课本内容,从易到难,从简到繁,一步一步地把学过的知识进行比较复习,对概念、定理、公式做出归纳、总结,加深对知识的理解,最好能把课本上的例题自己做一遍。对课本上的概念、定理、公式推理一遍,以形成对知识的整体认识。

其次,上课要认真听讲,记笔记,思考。

把预习中存在的问题放在课堂上着重听,必要时还需做好笔记,并通过一些练习题加以巩固。数学不同于其他学科,单把概念、定理、公式背熟,无法解决实际问题,只有通过练来减少运算中出现的错误。

再次,作业要“思、问、集”

作业一定要养成独立思考的习惯,多从不同的方法、角度入手,多从典型题目中探索多种解题方法,从中得到联想和启发。同时,还应多树立数学解题思想,如:方程的思想、函数的思想、数形结合的思想等常用方法;对于难题,要多问几个为什么,如改变条件、添加条件、结论与条件互换,原结论还成立吗?另外,对于自己作业、试卷中出现的错误,最好能准备一本错题集,以便今后复习中使用。做到绝不出现第二次类似错误。

总之,学习数学要有方法、计划和合理的安排。新课授完后,有些同学就感到头痛,于是,东看看西翻翻,一天下来,不知道自己学了什么。因此,每个同学都应根据自己的实际情况制订出合理的学习方法、目标;没有方法,就会变成一只无头苍蝇;没有目标就会没有动力。

初三数学学习方法总结篇2

一、时间利用

学习最重要的就是对时间进行有效利用,每天拿出一定的时间进行学习复习,时间不能过长,大约在一小时左右即可,关键在于每天这一个小时的时间一定要能够保证,学习切忌一曝十寒。在保证学习时间的同时,大家也要讲究学习效率,在学习的过程中千万不要心浮气躁,同学们要保证每天一个小时的学习是全神贯注的。

二、学习方法

良好的学习方法会大大提高我们的学习效率,最大化利用了宝贵学习时间。最好的学习方法其实也就是在课堂上经常强调的,主要是立足课本,形成对数学知识的系统认识做到形散而神不散,以及对错误的正确纠正。

1、立足课本知识:任何科目的学习都万变不离其宗,数学也不例外,数学里面的这个“宗”,就是课本,考试的内容有些会高于课本,但是绝不会逃脱所学基础知识点。因此不能一味地去做一些试题而忽略了课本这个根本。立足课本并不是就是认为我把书看了,看懂了就行。只有在看书的基础之上,必须要保证将课本的`知识点和例题弄明白,书后的每个练习都要认真地做一遍,这样才能说我们基本掌握了这一部分知识。

2、正确地纠错:在学习的过程中,每个人都会犯错,但是很多同学一错再错,这里面就涉及正确纠错的问题。有些学生认为纠错就是简单地用红笔把得数改正就可以的。正确的纠错应该是首先搞清楚自己到底错在哪里,是自己对题目的分析有问题还是运算过程中出现了错误,方便情况下使用错题本记录下来,每隔段时间要回顾下自己的错误,要把自己的错误记在心里,纠正头脑中的错误观念。

3、做好总结:总结是学习之后的一个重要环节,是对知识进行升华的形成系统化的知识网络,并在此基础上融会贯通。数学的总结应以每一章都形成一个小的知识体系,相关章节间形成以知识点连接形成一个大的知识网络。并利用这个知识体系和网络,记忆和掌握数学的各种定理和知识点。

三、具体学习计划

初三将会学习到的主要新知识点集中在圆、二次函数、相似三角形以及三角函数这几部分。但是初三另一个更重要的任务在于整个初中阶段数学知识复习为中考做好准备工作。学习计划因人而异,以下是我为新生作的今后的学习计划,可以根据你的实际情况慢慢改进完善。

第一阶段,时间应在开学前暑假。主要目的是提前预习初三的重点知识内容,需要在学习的过程中就将基础知识打牢,这样开学之后才能应付提高训练并为其他科目誊出学习时间。

第二阶段,是整个初三第一学期时间。这个阶段时间大约五个月,约占整个初三复习的一半时间左右。主要目的是完成初三新知识学习和初中数学基础知识复习。开学后应根据学校和教学老师进度等实际情况制定出详细学习计划。

初三数学学习方法总结篇3

作为教育工作者,对待学生学习上的问题,处理问题的心态与家长有所不同,家长由于亲情关系,容易急燥,然而对待学习和成长方面的问题,急燥是不解决问题的,必须要有科学的方式、方法和教育手段,引导学生解决这些学习中的问题。

数学有一个特点是重要、枯燥。重要是显而易见的,数学作为基础学科,高考、中考都考数学;同时它又是枯燥乏味的,这似乎是一对矛盾,要处理这对矛盾,就要解决一个数学学习当中的技巧性问题和心理问题。当然不可能人人都能把数学学好,由于各人的性向不同,有的人倾向于人文学科,有的人倾向于逻辑思维,有的人倾向于空间思维,有的人则倾向于动手能力…..各人的倾向性不一样,擅长的方面也各不相同,对数学能达到的层次也会参差不齐,但有一点,数学的一些基本要求一定要掌握,例如数学中的一些基本原理、数学方法不能有半点马虎。因为无论将来我们从事什么行业,数学作为一种基本的处理事物的方法都非常重要。一般的孩子只要通过正确的方法,正确的引导都能够达到。

一、数学中关于概念的问题

概念的形成需要一个过程。与人生哲理等概念不同,数学概念具有叠加性,也就是说新概念是在旧概念叠加的基础上来认识的。概念是数学中的一个根本问题,不是靠背,而是在不断地运用中逐渐形成的,须经过比较、实践、摸索、总结、归纳等过程,最后建立一个完整的概念。这个过程甚至可以说是痛苦的,漫长的一个阶段。

概念具有长期性。每个概念都有一个失败—再失败的过程,伴随着你对这个概念的错误理解,在挫折中不断加深的。

概念是随着一个人知识的增加而不断深入的。学数学对一个人建立完整的思维方式很重要,随着对不同数学概念的深入理解,人们处理问题的方式可以越来越趋于严谨。

要建立一个数学的概念网。数学是一个个概念的点阵,所有的相关的、从属的概念要在头脑中形成一个网络。学概念要把不能纳入其中的或相关概念认识清楚。总概念中各相关概念是怎样发展的要有一个清析的脉络。

从不同的层面上来理解一个数学概念。有比较才有认识,对于一个数学概念要擅于从正面、侧面、上面、下面等各个层面上来认识它。对于相似的、类似的.概念或概念的内部关系认识不清,不利于理解概念,这说明数学末学深入。

二、运算能力:

符号化、模式化是数学的一大特点,对这点我们应该有深刻的认识。

1、模式化。数学的一些定理、原理、公理都有一定的模式,“因为即最简单的一种模式,对各种数学模式的理解认识也是对人的逻辑思维能力的训练。

2、符号化。数学的符号与表达性符号不同,文学艺术中的表达性符号是需要我们仔细体会其中的含义的;而数学中的符号是一种替代性符号,它无需我们想其含义,作用就在于推导,它只是一个替身,帮助我们进行数学思维,所以我们不可以在它的含义上耗费太多的精力。数学就是符号游戏,我们对符号必须精通,才能进行迅速变形。

中学阶段有几个重要的定理:三垂线定理、正余弦定理、根与系数的关系、二次三项式定理。对这几个定理的运用必须熟练掌握。

三、做题技巧:

从做题方式来分,平时作业可分为硬作业和软作业两种:硬作业是指每天需要认认真真做的作业,这类作业要按正规的步骤一丝不苟地做,旨在训练自己的笔头功夫和书写能力;软作业是指每日需抽出一定的时间来浏览若干习题,这类题主要是用来锻炼自己的思维能力的,具体做法是无需动笔,眼睛看着习题,大脑中迅速掠过这道题的思路、做法,整个过程有点类似空对空。所以在平日做题中两种方式要搭配使用,认真做的题和浏览的题要相济并用。

做题要有节奏,难易结合。做题要讲质量,不能把精力都放在做偏、难、怪的题型上,因为高考中有难题,平时将重心放在难题上,基础知识难免会偏失,所以平时适度地做一些中等难度的题即可,关键是要学好基础知识,循序渐进。

做题要留体会,留下痕迹,学习分为三个过程:模仿、品味、迁移。模仿是初始阶段经常作用的一种方式,以老师或教科书为参照,按部就班地做。经过一次次地模仿,我们自己对这些记忆中的题型在大脑中进一步地加工、体会,形成自己对这类题的成型的理解。经过前两个阶段的积累,最后达到将原知识体系与现有知识的相互融合,就实现了对新、旧知识的最新体会。

初三数学学习方法总结

九年级数学学习是一个关键时期,一方面九年级数学所涉及的知识点例如反比例函数、二次函数、相似三角形、圆的基本性质等,都是数学学习中难以掌握的知识点,而这些资料在中考中所占的比重比较大。另一方面,九年级数学也是到了学生总结和综合应用的阶段,所涉及到的考试资料不再是单一的知识点,而是所学知识点的融会贯通,所以部分学生不是很适应这一阶段。那么如何渡过这一关键阶段呢我们能够从以下四个方面进行探讨:

首先,理顺知识点,注重理解和记忆。

数学是一门层层递进的学科,在其教学安排上也是由简到繁由易到难的过程。数学的发展过程中,分支也比较多,学生应当要了解和掌握每一个知识点的最基本的知识层次和架构。如上半学期的相似三角形资料,我们对其知识结构能够进行整理。

同学们对每一个知识点都能够用结构方法进行相应的整理,这样就能系统地整理出初中数学所有的知识点所对应的框架,从而更好地掌握初中所学的知识。另外,学生在数学学习时应以理解为主,可是对于某些公式、结论适当的记忆还是必要的,如相似三角形中黄金分割比、A字型、X型、Z型等基本图形,适当的记忆有助于提高我们分析题目本事和解题的速度。

其次,熟悉基本应用,注重知识点的归纳和延伸。

理解了数学知识点并不等于会灵活地应用。数学来源于生活,所以数学知识点的产生与实际生活中的应用是相联系的,即每一个数学知识点下有相应的问题相连,对于这些基本的问题,同学们应当理解和熟练的掌握。如黄金分割比中整条线段AB、较长线段AC和较短线段CB所产生的比例式:ACAB=BCAC,涉及到三个量的关系,若已知其中的两个量,能够解出第三个量,那么对于黄金分割比的问题,在分析题目时,紧紧地抓住问题的核心:找出相应的量,然后运用公式进行求解。同学们对这样的应用能够进行适当的整理,这样一方面加深了知识点的理解,另一方应对考试中的基础题有全面的了解。数学只掌握基本的应用还是不够的,作为教师当然是期望同学们能灵活的应用,这就要注意知识点的外延。如果能熟悉这些知识点的外延,在分析题目时能够有更深的认识。了解由知识点产生的基本问题的,并熟悉知识点的外延,这样才能灵活的运用我们所学的知识。

第三,培养数学意识,注重数学思想训练。

九年级数学学习又是总结和归纳的时候,对于问题的`综合和加深,很多同学不适应。经过研究分析,我们能够发现这些资料也是有其规律性,这就需要同学们养成良好的数学意识,掌握数学的各种思想,如方程思想、数形结合思想、分类思想等等,在日常训练时同学们要注意总结和归纳。

第四,养成良好的学习习惯,注重订正和查漏补缺。

新课改的一大目的是减轻学生的课业负担,可是数学学习与日常的训练还是有着密切联系,这是一对矛盾,如何来化解矛盾,我们只能是经过平时良好的学习习惯即提高数学课堂的听课效率,提高数学作业的质量,做好补差和补缺工作着手。题海战术不是提高效率的方法,我们应从以往反复做相同类型题目的题海战术中解脱出来,注重于训练中做错的练习订正及在学习中存在的缺漏的补习。九年级的学习时间是很紧张的,如何在有限的时间内提高学习的效率,与好钢要用在刀刃上一样,将自我存在的问题解决,是提高数学学习的有效途径。很多同学不习惯认真地去应对自我的错误,其实认真的解决一个数学问题,比做几道重复的题目要有用得多。

初三数学学习方法总结

数学是初中阶段的三大主科之一,它在初中的学习科目中,占据了主要地位。

面对着初中数学里的圆、三角形、四边形、函数、根式、有理数、方程组、不等式等等,也许有很多同学会觉得头疼,初中数学辅导网编辑为了让同学们能够好好复习,考出优异的好成绩,特此汇总了涵盖整个初中数学的知识点、各种精选练习题、经典试题、中考真题,愿同学们多下载学习,打下坚实的基础。

深刻理解概念。

概念是数学的基石,学习概念(包括定理、性质)不仅要知其然,还要知其所以然,许多同学只注重记概念,而忽视了对其背景的理解,这样是学不好数学的,对于每个定义、定理,我们必须在牢记其内容的基础上知道它是怎样得来的,又是运用到何处的,只有这样,才能更好地运用它来解决问题。

多看一些例题。

细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,我们学的概念、定理,一般较抽象,要把它们具体化,就需要把它们运用在题目中,由于我们刚接触到这些知识,运用起来还不够熟练,这时,例题就帮了我们大忙,我们可以在看例题的.过程中,将头脑中已有的概念具体化,使对知识的理解更深刻,更透彻,由于老师补充的例题十分有限,所以我们还应自己找一些来看,看例题,还要注意以下几点:

不能只看皮毛,不看内涵。我们看例题,就是要真正掌握其方法,建立起更宽的解题思路,如果看一道就是一道,只记题目不记方法,看例题也就失去了它本来的意义,每看一道题目,就应理清它的思路,掌握它的思维方法,再遇到类似的题目或同类型的题目,心中有了大概的印象,做起来也就容易了,不过要强调一点,除非有十分的把握,否则不要凭借主观臆断,那样会犯经验主义错误,走进死胡同的。

要把想和看结合起来。我们看例题,在读了题目以后,可以自己先大概想一下如何做,再对照解答,看自己的思路有哪点比解答更好,促使自己有所提高,或者自己的思路和解答不同,也要找出原因,总结经验。各难度层次的例题都照顾到。

看例题要循序渐进,这同后面的“做练习”一样,但看比做有一个显著的好处:例题有现成的解答,思路清晰,只需我们循着它的思路走,就会得出结论,所以我们可以看一些技巧性较强、难度较大,自己很难解决,而又不超出所学内容的例题,例如中等难度的竞赛试题。

多做练习。

要想学好数学,必须多做练习,但有的同学多做练习能学好,有的同学做了很多练习仍旧学不好,究其因,是“多做练习”是否得法的问题,我们所说的“多做练习”,不是搞“题海战术”。后者只做不思,不能起到巩固概念,拓宽思路的作用,而且有“副作用”:把已学过的知识搅得一塌糊涂,理不出头绪,浪费时间又收获不大,我们所说的“多做练习”,是要大家在做了一道新颖的题目之后,多想一想:它究竟用到了哪些知识,是否可以多解,其结论是否还可以加强、推广,等等,还要真正掌握方法,切实做到以下三点,才能使“多做练习”真正发挥它的作用。必须熟悉各种基本题型并掌握其解法。课本上的每一道练习题,都是针对一个知识点出的,是最基本的题目,必须熟练掌握;课外的习题,也有许多基本题型,其运用方法较多,针对性也强,应该能够迅速做出。许多综合题只是若干个基本题的有机结合,基本题掌握了,不愁解不了它们。在解题过程中有意识地注重题目所体现的出的思维方法,以形成正确的思维定势。数学是思维的世界,有着众多思维的技巧,所以每道题在命题、解题过程中,都会反映出一定的思维方法,如果我们有意识地注重这些思维方法,时间长了头脑中便形成了对每一类题型的“通用”解法,即正确的思维定势,这时在解这一类的题目时就易如反掌了;同时,掌握了更多的思维方法,为做综合题奠定了一定的基础。多做综合题。综合题,由于用到的知识点较多,颇受命题人青睐。做综合题也是检验自己学习成效的有力工具,通过做综合题,可以知道自己的不足所在,弥补不足,使自己的数学水平不断提高。“多做练习”要长期坚持,每天都要做几道,时间长了才会有明显的效果和较大的收获。

初三数学学习方法总结篇6

1、基础很重要

是不是感觉数学都能考满分的同学,连书都不用看,其实数学学霸更重视基础。数学公式,几何图形的性质,函数的性质等,都是数学学习的'基础,甚至可以说基础的好坏,直接决定中考数学成绩的高低。

2、整理错题本

在所有科目中,数学这个科目最重要错题本学习法。平时如果坚持整理错题,最终会导致自己错题本很多很厚,我们可以定期复习,对于一些彻底掌握的,可以做个标记,以后就不用再次复习,这样错题本使用起来就会效率更高。

3、做题要多反思

数学学习要大量做题去巩固,但做题不要只讲究数量,更要讲究质量,遇到经典题,综合性高的题目时,每道题写完解答过程后,需要进行分析和反思,多问几个为什么,这样才能把题真正做透。

4、把数学知识形成体系

课本上的知识都是零散的,建议大家自己画思维导图把知识串起来,画思维导图的过程,就是不断理解,让知识变成结构的过程。

初三数学学习方法总结篇7

1.学习中的“读”

现代社会已进入信息化时代,要求人们不仅要“学会”,更要“会学”。“会学”的基础当是会“读”,包括:

1.1读教材是学生学习数学的主要材料,它是数学课程教材编制专家在充分考虑学生生理心理特征、教育教学质量、数学学科特点等众多因素的基础上精心编写而成的,具有极高的阅读价值。读教材包括课前、课堂、课后三个环节。课前读教材属于了解教材内容,发现疑难问题;课堂读教材则能更深刻地理解教材内容,掌握有关知识点;课后读教材是对前面两个环节的深化和拓展,达到对教材内容的全面、系统的理解和掌握。

1.2读书刊除读教材外,学生应广泛阅读课外读物,如上海教育出版社出版的“初、高中学生数学课外阅读系列”丛书、《中学生数学》杂志等。即如读报也不仅能使学生关心国内外大事,也能使学生关注我们日常生活中的数学,捕捉身边的数学信息,体会数学的价值,了解数学研究的动态。然而,与各种各样的复习资料、习题集相比,渗透现代科技的高质量的数学课外读物实在太少了。

数学学习中的“读”,不同于读小说书,常需纸笔演算推理来“架桥铺路”,还需大脑建起灵活的语言转化机制。

2.数学学习中的“听”

数学学习中的“听”,主要指听课,它是学生获取知识的重要环节,也是学生系统学习知识的基本方法。听课不仅指听老师上课,而且包括听同学的发言。

2.1听老师上课主要是听老师上课的思路,即发现问题、明确问题、提出假设、检验假设的思维过程。既要听老师讲解、分析、发挥时的每一句话,更要抓住重点,听好关键性的步骤,概括性的叙述。特别是自己读教材时发现或产生的疑难问题。

2.2听同学发言倾听和接受他人的.数学思想和方法,不仅是听老师上课,也包括听同学的发言。同学间的思想交流更能引起共鸣。从中可以了解其他同学学习数学和思考问题的方法,加之老师适时的点拨和评价,有利于自己开阔思路、激发思考、澄清思维、引起反思。学会倾听老师和同学的意见,反思自己的想法,有助于发展学生良好的个性,培养团结协作的精神,增强群体凝聚力。

3.数学学习中的“讲”

培养良好的语言文字表达能力,不仅是语文学习的任务,也是提高数学素养的重要内容,是数学学习的任务之一。数学学习中的“讲”是培养学生语言文字表达能力的重要形式,包括讲体会、讲思路等。

3.1讲体会学生通过读教材、读书刊,听上课、听发言后,再让学生讲“读”、“听”的体会,可以加深“读、听”内容的理解和掌握。如讲教材内容,特别是教材中“读读”内容的体会,讲报刊杂志中的数学,讲课外读物上的内容概要,讲对老师上课、同学发言的看法,甚至讲自己存在的疑问等。

3.2讲思路学习数学离不开解题,但不能为解题而解题,应在解题过程中重视解题思路的讲解,哪怕是错误的思路从中也能吸取经验教训,深刻理解数学概念和原理。以学生的作业作为了解学生学习状况的唯一通道往往掩盖了学生思维的完整过程,是不全面的。通过学生大胆地讲,才能全面反应学生的思想,暴露学生思维的过程,以利于教师掌握准确的反馈信息,及时调整教学计划。

4.数学学习中的“写”

数学学习中的“写”是培养学生书面表达能力的重要形式。通过上述“读、听、写”,应进一步要求“写”,它是对“读”、“听”的检验,对“讲”的深化。除通常要完成的书面写(做)作业外,还应包括写读后感、写小论文等。

4.1写读后感通过阅读教材,尤其是教材中的“读一读”内容,以及报刊杂志、课外读物的有关内容,把自己的感想或者内容概要写下来,不求面面俱到,只求日积月累,培养兴趣,提高文字表达能力。

4.2写小论文写小论文比写读后感的要求更高些,但不是不可做到。这需要学生广泛阅读,积累资料,深入探究,学会分析问题、提出问题和解决问题的能力,培养敏锐的观察力,增强创新意识,提高创新能力。

5.数学学习中的“用”

数学是现实世界的抽象反映和人类经验的总结,是构成现代文化的重要组成部分,数学知识的学习必须与数学应用有机地结合起来,正如“学以致用”是我们一直所倡导的。但强调应用,不是再回到“测量、制图、会计”等那种忽视基础理论的邪路上去,而是要培养学生用数学的意识,学会用数学的理论、思想和方法分析解决其他学科问题和生活、生产实际问题。真正体现数学的应用价值。

初三数学学习方法总结篇8

初三是中考备考阶段,共分为三个复习阶段,而且中考考生在每一个复习阶段的学习重点是不同的,中考考生要循序渐进的进行复习,不要好高骛远,中考考生在一轮复习时重视基础知识的学习,在二轮复习时学会将数学基础知识运用到解题中,中考考生在第三轮复习时重视查缺补漏,弥补以前忽略的知识。不同的中考考生的实际情况不一样,想要快速提高数学成绩,那么需要对自己有一个正确的认识,重视相应的复习阶段。

1、制定计划

想要快速提升数学成绩,中考考生需要有一个符合自己实际情况的学习计划,既要做长期打算,也要有短期安排,中考考生要严格的'要求自己、坚持落实自己的学习计划。而且要做到天天清,要有一个不达目的不罢休的决心。

2、培养思维

中考考生在学习数学时,逻辑思维能力的强弱是非常重要的,所以中考考生在初三想要快速提高数学成绩,就需要锻炼自己的逻辑思维能力。中考考生可以通过新颖的解题方式来进行锻炼,也可以运用逆向思维进行学习。

3、做题细心

中考考生在提高数学成绩的过程中,做题是必不可少的过程,其实很多中考考生的数学成绩不好不是因为基础知识不扎实,所考的知识不会,而是因为中考考生在做题过程中不细心,没有耐心,心情浮躁,所以中考考生想要快速提高学习成绩,那么就要克服自己的浮躁心理,用心去做每一道题。

4、解题习惯

还有一部分中考考生的数学成绩不好,是因为在做数学试题时没有一个好的解题习惯,在解题时解题思路不明确,没有一个规范的解题步骤,所以虽然中考考生有解题能力但是由于解题习惯的问题导致一些该得到的分数没有得到,进而数学成绩不好。

初三数学学习方法总结篇9

1、被动学习。许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。

2、学不得法。

老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。

3、不重视基础。

一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。

4、思维方式和学习方法不适应数学学习要求。

一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的`抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。

以上的内容就是造成两极分化比较严重的原因,希望初中阶段学生数学学习成绩避免这一现象。

初三数学学习方法总结篇10

1.求教与自学相结合

在学习过程中,即要争取教师的指导和帮助,但是又不能处处依*教师,必须自己主动地去学习、去探索、去获取,应该在自己认真学习和研究的基础上去寻求教师和同学的帮助。

2.学习与思考相结合

在学习过程中,对课本的内容要认真研究,提出疑问,追本究源。对每一个概念、公式、定理都要弄清其来龙去脉、前因后果、内在联系,以及蕴含于推导过程中的数学思想和方法。在解决问题时,要尽量采用不同的途径和方法,要克服那种死守书本、机械呆板、不知变通的学习方法。

3.学用结合,勤于实践

在学习过程中,要准确地掌握抽象概念的本质含义,了解从实际模型中抽象为理论的演变过程。对所学理论知识,要在更大范围内寻求它的.具体实例,使之具体化,尽量将所学的理论知识和思维方法应用于实践。

4.博观约取,由博返约

课本是学生获得知识的主要来源,但不是唯一的来源。在学习过程中,除了认真研究课本以外,还要阅读有关的课外资料,来扩大知识领域。同时在广泛阅读的基础上,进行认真研究,掌握其知识结构。

5.既有模仿,又有创新

模仿是数学学习中不可缺少的学习方法,但是决不能机械地模仿,应该在消化理解的基础上,开动脑筋,提出自己的见解和看法,而不拘泥于已有的框框,不囿于现成的模式。

6.及时复习增强记忆

课堂上学习的内容,必须当天消化,要先复习,后做练习,复习工作必须经常进行,每一单元结束后,应将所学知识进行概括整理,使之系统化、深刻化。

初三数学学习方法总结篇11

一、该记的记,该背的背

有的同学认为,数学不像英语、史地,要背单词、背年代、背地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗尽管你理解了乘法是相同加数的和的运算,但你在做9x9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有很多的规定需要记忆,比如规定(a≠0)等等。所以,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。所以,数学的定义、法则、公式、定理等必须要记熟,有些最好能背诵,朗朗上口。

对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就能够打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以必须的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手。

二、几个重要的数学思想

1、“方程”的思想

数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,能够建立一个相关等式:速度x时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样包含未知量的等式就是“方程”,而经过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二、初三我们还将学习解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是经过必须的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的很多实际应用,都需要建立方程,经过解方程来求出结果。所以,同学们必须要将解一元一次方程和解一元二次方程学好,进而学好其它形式的方程。

所谓的“方程”思想就是对于数学问题,异常是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的'方程,进而用解方程的方法去解决它。

2、“数形结合”的思想

大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支枣-代数和几何,代数是研究“数”的,几何是研究“形”的。可是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应当根据题意画出草图来分析一番,这样做,不但直观,并且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。

3、“对应”的思想

“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在计算或化简中,将对应公式的左边,对应a,y对应b,再利用公式的右边直接得出原式的结果即。这就是运用“对应”的思想和方法来解题。初二、初三我们还将看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。“对应”的思想在今后的学习中将会发挥越来越大的作用。

    【工作总结】栏目
  • 上一篇:人研修学习总结(整理9篇)
  • 下一篇:文员顶岗实习总结9(整理5篇)
  • 相关文章

    推荐文章

    相关栏目