2013年3月7日,怀柔区区委书记齐静从北京市副市长苟仲文手中接过中关村国家自主创新示范区怀柔园的牌子,不到一年的时间,怀柔园已在加速产业升级方面取得了显著的成绩。
“我们将以三大特色园区建设和龙头项目带动为抓手,大力引进科技资源,积极发展战略性新兴产业集群,使怀柔园在‘十二五’期间迅速成长。”
怀柔园负责人所说的三大特色园区即纳米科技产业园、科技服务产业园和数字信息产业园。纳米科技产业园不仅是怀柔园的一张金名片,也是北京市的一个符号。2013年6月18日,怀柔纳米科技产业园被科技部高新司评定为北京国家纳米高新技术产业化基地。这是中国第二个纳米领域部级高技术产业基地。
“我们对怀柔纳米科技产业园定下的目标是,到2015年实现总产值200亿,到2022年达到500亿。未来我们要把纳米科技产业园做成全国的纳米科技创新源头,聚集纳米产业链的各大要素。”怀柔园负责人告诉记者,仅2013年上半年就吸纳了13个项目,到现在为止,建成时间才2年的纳米科技产业园一共有29个项目入驻。这些项目分布在环保、能源、传统工业、生物医疗四大领域。比如在水处理领域,吸引了行业龙头企业碧水源公司;在能源领域,吸引了有研粉末公司;在生物医疗领域,吸引了欧亚瑞康等龙头企业。
除了纳米科技产业园,怀柔园引以为豪的还有科技服务产业园。科技服务产业园脱胎于中科院怀柔科教产业园,始于2009年6月12日,它由教育基地即中科院大学、科研与转化基地、北京综合研究中心三部分组成。
中科院大学占地1300亩,计划2014年全部竣工;科研与转化基地占地1334亩,有12个研究所的24个项目入驻;北京综合研究中心一期工程总投资预计75.7亿元,计划2014年启动建设,2019年全部建成,包括北京先进光源、物质科学综合极端条件设施、地球系统数值模拟装置等三大科学装置和依托于科学装置的若干研究中心。
“科技服务产业园引进世界先进的服务资源和模式,探索科技服务业快速发展道路,力争率先形成带动北京、辐射全国、链接全球的世界级科技创新专业化服务基地。到2022年,科技服务业将实现总收入120亿元,培育大型龙头企业10家,集聚10家市场化运行孵化平台。”
与此同时,怀柔园抓住新一代信息技术产业发展和产业价值链中数据、信息等服务业态专业化布局的机遇,在园区布局建设数字信息产业园,总面积800亩。重点发展云计算关键技术研发与应用、物联网关键技术研发与应用、大型数据中心建设、芯片研发设计、数字内容领域。其中北京超级云计算中心,其计算速度达到了千万亿次/秒,2013年已投入运营。
“怀柔园要打破传统的规模外延、技术外生、市场外向的发展路径依赖,在‘绿色生态,创新驱动、内生发展’的道路上更进一步,探索一条全面转型升级的发展路径,打造成为符合首都经济转型升级和中关村建设要求的新型科技园区。”怀柔园负责人说。
玛氏食品:
创新铸成品牌多元化
集玛氏在华的行政管理中心、结算中心、人才发展中心以及科技研发中心等总部职能于一身的玛氏(食品)中国有限公司总部基地于2010年9月落户怀柔雁栖经济开发区,总投资达1.3亿人民币。当时玛氏中国总裁易瀚博在致辞中表示,作为全球前三甲的食品企业,玛氏将其中国总部基地项目选址在北京市怀柔区雁栖经济开发区,不仅充分表明了玛氏对北京投资环境的看好,同时也显示了对中国市场未来发展的巨大信心。
时任怀柔区区长池维生在奠基仪式上的致辞中也特别指出,玛氏中国总部基地项目不仅符合北京市“人文北京、科技北京、绿色北京”的城市发展战略,更是与其建设“世界城市”和怀柔区经济发展的战略构想相契合,玛氏中国总部基地项目所呈现出的经济与环境和谐发展这一“绿色”双赢的特点,正是对可持续发展理念的集中诠释。
这个全球最大的家族企业在中国有三大生产基地,其中有两大生产基地就在怀柔园,2013年产值25.9亿,税收5.0亿。玛氏中国以其众多的国际知名品牌,如德芙(DOVE)、M&M's、士力架(SNICKERS)、彩虹糖(SKITTLES)、宝路PEDIGREE)、伟嘉(WHISKAS),在市场上树立起自己的形象。作为玛氏公司在中国的业务,玛氏中国代表全球领先的食品生产商,由宠物护理、巧克力、箭牌业务组成,是全球超过300亿美元销售额的重要组成部分。
创立于1911年的玛氏公司是全球最大的食品生产商之一,是全球巧克力、宠物护理、糖果等行业的领导者,拥有众多世界知名的品牌。在这些品牌中,价值超过十亿美元的品牌就包括德芙、玛氏、M&M’S、士力架、UNCLEBEN’S、傲白、宝路、皇家、伟嘉和特趣。其中,糖果巧克力类产品和宠物类产品销量分别位居全球同类产品首位。目前全球有三分之一的宠物每天都在食用玛氏公司的宝路狗粮和伟嘉猫粮。2008年10月,玛氏联手股神巴菲特,斥资230亿美元收购口香糖制造商箭牌,迅速得到一个充分全球化的网络,以及与主业巧克力相比更具有健康形象的业务。
1983年,玛氏公司开始通过分销商在中国市场上销售糖果产品。1990年,作为最大的赞助商之一,玛氏公司以M&M's品牌赞助了第十一届亚运会。这次赞助活动使玛氏与中国消费者建立了深厚的关系和友谊,使M&M's成为中国最受欢迎的糖果品牌之一。1993年,玛氏食品(中国)有限公司在北京正式成立,是最早的外商独资企业之一。巧克力生产工厂在同年建成投产。1995年又投资建立了宠物食品工厂,生产宝路狗粮和伟嘉猫粮。1996年将中国的公司总部和巧克力糖果生产厂落户怀柔。2008年,玛氏中国以士力架巧克力作为奥运会官方巧克力,赞助了北京奥林匹克运动会。2010年,玛氏巧克力总部落户怀柔。
碧水源:创新引领跨越式发展
2013年12月16日,万众瞩目的2014年碧水源新品会在北京召开,全球首发了国际领先的超低压纳滤膜净水机,全面塑造“碧水源,净水行业第一专业品牌”形象。
碧水源进入净水民用市场并非拍脑门战略,而是在进行了充分的市场调研之后,并结合自身的研发、技术、产能及资金优势做出的前瞻。成立于2001年的碧水源,视科技创新为企业持续发展的生命,先后与清华、浙大等高校强强联合,吸纳国际一流的行业专家学者,形成强大的研发团队,取得多达170项专利技术成果,掌控国际核心膜技术,堪称世界前三甲。
十多年的积淀,碧水源在工程净水领域业绩遥遥领先,膜过滤技术久经考验,也为民用净水应用打下了基石。如奥运水环境工程、国家大剧院景观水工程、滇池流域、太湖流域、海河流域治理等国家水环境治理重点工程,每年为我国提供高品质再生水达30亿吨,是解决我国“水污染、水资源匮乏、饮水安全”问题的强力技术支撑。“在这样的背景下,开拓进入民用净水市场,完全是专业的技术和团队做专业的事情。很多民用净水企业,都是从其他行业转行的,不具备对核心技术的掌握,膜滤芯只能依靠外购,受制于人,碧水源具备完全拥有自主知识产权的世界顶级膜过滤技术。”碧水源净水科技有限公司总经理梁辉自豪地说,“民用净水与工程净水不同,不仅需要技术,还需要资金。2010年4月碧水源成功上市,资金优势凸显,足够的资金投入为拓展民用净水领域新业务解除了后顾之忧,也加快了生产线的建设投产,成为规模化生产膜滤芯和净水产品的少数企业之一。”
截止目前,碧水源有世界最大、工艺水平一流的膜研发与生产基地,年产高品质增强型PVDF中空纤维微滤膜400万㎡、超滤膜200万㎡、反渗透膜100万㎡和超低压反渗透膜100万㎡,建成了现代化的民用净水设备生产线,年产100万台,并配备国际领先的产品检验和水质检测系统。“如此庞大的生产能力属国内唯一,在世界也属领先水平。”
本次首发的新产品超低压纳滤膜净水机堪称国际领先。超低压纳滤膜是碧水源耗费巨资,从美国引进反渗透膜生产线,历时2年,近100名国内外专家参与研发,专为民用净水市场开发的重量级膜产品,是目前世界上技术最先进、独一无二的净水膜材料。超低压纳滤(NF)是介于超滤与反渗透之间的一种压力驱动膜分离技术,其截留分子量在200~1000的范围内,孔径为几纳米。相比反渗透膜,纳滤膜具有操作压力低(一般在0.5-2.0MPa,故有“低压反渗透”之称)、水通量大的特点。低压纳滤膜多为复合膜及荷电膜,因而其耐压密性和抗污染能力强。此外,还保留了部分对人体有益的营养元素,克服了超滤膜不能去除重金属和水垢、反渗透膜出水过于纯净的缺点,更适于民用净水领域。
“超低压纳滤膜制水时仅需要2-3公斤压力,低压节能,废水率仅为普通RO膜的1/10,是一项最具发展前景的节能节水产品。”梁辉介绍,碧水源第二代产品WaterPad便携式净水机因时尚超薄、精致小巧、安装和滤芯更换便捷等显著特点而著称于业界,仅一年时间即突破了4万台的销量大关;WaterPlant迷你水厂采用微滤、超滤、超低压反渗透三膜组合,做到大通量、无压力桶、无废水,在业界独秀一枝。另外,碧水源还了首款智能化高端全屋净水机。
有研粉末:创新实现“开药方”式飞跃
与外企玛氏食品和民企碧水源的性质不同,有研粉末新材料(北京)有限公司(简称有研粉末)是北京有色金属研究总院科研院所转型的国企,但这并没阻碍它在技术创新上的作为。
自2004年3月4日成立以来,通过技术创新,有研粉末已发展成为国内排名第一,亚洲规模最大,世界第三的高新技术企业。其金属粉末及粉末冶金制品的年产能达到1.7万吨,国内市场占有率约35%,国际市场占有率约10%,是主要竞争对手金川公司和重庆冶炼公司市场占有率之和。尤其是近两年来,经过并购重组,有研粉末拥有3家控股公司:北京恒源天桥粉末冶金有限公司、北京康普锡威焊料有限公司和MakinMetalPowders(UK)Limited(英国)。2013年年销售收入超过10亿元,净利润近6000万元。
问渠那得清如许,为有源头活水来。提起金属粉末,制粉技术是一大关键,用通俗的话讲,就是将金属原材料研制成粉末,然后压制烧结成各种部件,比如汽车、飞机零部件。在这个过程中,涉及诸多环节,首先要根据制品的使用环境来做材料设计,比如在航天环境下使用的制品跟汽车上使用的制品,其材料在耐磨性、耐蚀性、强度等方面的要求是完全不一样的,这就要求设计材料的时候考虑各种金属材料以及添加材料的配比。比如铁基粉,有时候需要在一吨铁基粉里添加500克碳元素,以增强它的韧性,怎样把它均匀混合?这就需要综合技术的提升。再比如切割大理石的金刚石工具,就是用合金粉末制成的。最初的金刚石工具有切割不平整的问题,后来有研粉末的研发人员发现是因为工具的平衡性达不到要求。经过反复试验,研发人员最后在合金材料中添加了另外一种材料才解决了工具的平衡性问题。“材料设计就像开药方的医生,要深入研究病人的病情才能做到对症下药。这方面正是有研粉末的核心竞争优势。”有研粉末总经理汪礼敏说。
材料设计完后,另一大关键技术就是制粉技术。制粉技术工艺不同,研制成的金属粉末质量就有很大差别。经过多年的实验,有研粉末已经具有电解法、雾化法、化学法、扩散烧结法、氧化还原法、机械法等多种制粉技术。生产的电解铜粉、雾化铜粉、铜合金粉等产品,广泛应用于粉末冶金零部件、含有轴承、摩擦材料、金刚石工具、电碳、导热、触点、催化剂、射孔弹等行业。例如,“改进型雾化工艺生产高品质(无铅)铜合金粉技术改造”实现节电13%,节水18%,铅含量能控制在100ppm以下。这个过程就如同药厂根据医生开出的配方制作出各种药剂。此外,有研粉末已建成国内第一条粉末冶金中空凸轮轴生产线,年产300万件的具有自主知识的复合凸轮片生产线,高端粉末冶金零部件制造技术处于国内领先水平。
随着我国工业特别是汽车工业的快速发展,粉末冶金产品的应用越来越广,其中以高密度、高强度、高尺寸精度、结构特殊为特点的“三高类”粉末冶金零部件需求量越来越大,例如大型客机、高速列车、船舶制动用高性能粉末冶金摩擦材料及刹车片。然而,目前我国平均每辆汽车的粉末冶金零部件用量约5kg,仅为美国的1/4,每年需进口相关金属粉末及制品近100亿元。为此,国家工信部的《新材料产业“十二五”重点产品目录》已经将用于金刚石、粉末冶金等领域用的金属粉末和制品列入“新材料产业‘十二五’重点产品”。
模具使用寿命取决于抗磨损和抗机械损伤能力,一旦磨损过度或机械损伤,须经修复才能恢复使用。目前可采用的修复技术有电镀、电弧或火焰堆焊、热喷涂(火焰、等离子)等。电镀层一般很薄,不超过0.3mm,而且与基体结合差,形状损坏部位难于修复,在堆焊、热喷涂或喷焊时,热量注入大,能量不集中,模具热影响区大,易畸变甚至开裂,喷涂层稀释率大,降低了基体和材料的性能。
利用激光熔覆的方法可实现对模具的修复。用高功率激光束以恒定功率P与热粉流同时入射到模具表面上,一部分入射光被反射,一部分光被吸收,瞬时被吸收的能量超过临界值后,金属熔化产生熔池,然后快速凝固形成冶金结合的覆层。激光束根据CAD二次开发的应用程序给定的路线,来回扫描逐线逐层地修复模具。由于激光束的高能密度所产生的近似绝热的快速加热,对基体的热影响较小,引起的畸变可以忽略,特别是经过修复后的模具几乎不需再加工。
1激光修复系统
激光修复技术是集高功率激光、计算机、数控机床、CAD/CAM、先进材料、数控技术等多学科的应用技术。修复系统主要由硬件设备和制造过程软件组成。硬件设备包括激光器、数控系统及工作台、送粉装置、光路系统、水冷装置、保护气系统和在线控制所涉及的数据采集装置。软件系统包括制造零件成型软件擞据通讯和在线控制软件。激光修复过程如图2所示。CO2激光器发出的激光经CNC数控机床Z轴(垂直工作台)反射镜后,进入三维光束成形聚焦组合镜,再进入同轴送粉工作头,组合镜和工作头都固定在机床Z轴上,由数控系统统一控制。载气式送粉器将粉末均匀输送到分粉器的同轴送粉工作头。
模具位于CNC数控工作台X-Y平面上,根据CNC指令,工作台、组合镜和送粉头按给定的CAD程序运动。同时加入激光和粉末,逐层熔敷。在温度检测和控制系统作用下,使模具恢复原始尺寸。为保证熔覆材料(金属粉末)和基体(模具)材料实现冶金结合,以及模具的尺寸精度、表面光洁度和材料性能,需将φ50mm圆形多模1kW-5kW高功率激光束变换成强度均匀分布的圆形光束,光斑尺寸可调(光路系统),并配有水冷系统和光束头气体保护系统,同时需重点考虑同轴送粉装置和现场控制系统的设计。
1.1同轴送粉装置
稳定可靠的粉末输送系统是金属零件修复质量的重要保证。粉末输送的波动将影响修复的质量。激光修复对送粉的基本要求是连续、稳定、均匀和可控地把粉末送入激光熔池。送粉装置由送粉器和同轴送粉嘴组成。在送粉器的粉斗下部,由于平衡气压的作用形成气固两相流化,并从导管开孔,随载气输送粉末。送粉量由输送气体的压力调节,拓宽了送粉范围,实现从5g/min-150g/min均匀连续可调送粉,送粉精度高达±5。设计的载气同轴粉嘴,消除了气体压力波动引起的4路送粉不均匀,并使工作距离加大,且连续可调。
1.2模具修复过程的控制
在理论上,熔池温度场决定修复过程的宏观与微观质量,因此在激光熔覆层质量控制过程中,表征熔覆层熔池温度场的实时检测非常重要。采用红外测温技术来检测激光加工区域的温度场,结合温度场标定结果推导出实际的温度场信息,来控制激光器功率输出值以及CNC机床的运动速度,以保持熔池温度稳定,避免零件由于过热或温度不均产生裂纹气孔等缺陷。虚线范围内所示的是比色测温仪,光路系统选用单台相机,切换不同滤色片的单通道图像记录方式。滤光片及其控制保证两个滤光片(804.5nm和894.6nm)交替置于数字相机图像记录光路中,移动响应时间<10ms,由计算机控制的高精度步进电机实现准确定位。软件包括三部分:①控制滤光片转入记录光路机械控制部分;②进行实时的同步图像采集、处理以及温度场标定和计算;③用测量温度变化量所得到的过程参数,调节激光功率和机床运动速度。
1.3激光修复模具工艺参数
激光修复伴随着传热、辐射、固化、分子取相及结晶等物理和化学变化,是个多参数过程。激光功率P、扫描速度、送粉量、熔池温度等都会对其产生影响。因此必须把参数合理地组合,以确保修复工作是在涂覆特性可知的情况下进行。在激光熔敷过程中,如果不采用特殊的工艺过程对基材的热输入量进行控制,将会使熔敷层与基体结合程度不理想,或在熔层表面和熔敷层与基材的过渡区产生裂纹。因此,合理地选择工艺参数是激光熔覆技术用于模具维修的关键因素。
根据物理冶金原理,熔敷材料和基体材料必须加热到足够高的温度才能满足实现冶金反应所无原则的条件,最终形成几何外形规则的熔敷层,见图1,根据经验,应尽可能使熔敷材料加热到较低的温度,这样可以减小熔敷裂纹、畸变倾向,也可避免熔敷材料的烧损和蒸发,需控制熔化材料的熔点(取基体、粉末材料两者最高熔点)Tm+(50-100)℃。参考温度场计逄,理论上P取值为1KW-2KW、为2mm/s-4mm/s可满足上述要求,至于熔覆层表面不平度,可通过调节送粉量实现其最小化。
2.2试验方法
试验用横流连续波5kW-CO2激光器,光束模式为多模,光斑直径为4mm,基体材料(模具)为5CrMnMo钢,试样尺寸80mm×60mm×10mm,由于Ni合金粉流动性好,与基材相结合后表面光洁,价格适中,故选用了Ni60镍基合金粉末材料。试验选定激光功率P为1.5kW。
3试验结果分析
3.1工艺参数对模具修复性能的影响
从熔覆层组织可以看出,激光与粉末材料相互作用充分,稀释率适中,在熔覆层内各层间组织与层内组织稍有差别,层内组织均匀细小致密,层间组织较粗大。由此可知,激光修复可以在相当宽的范围内获得组织均匀、细小致密和性能优异的修复层。测量1~3层硬度变化为85HV0.2。
试验结果表明,粉末在与激光相互作用时,如果激光功率P>5kW且扫描速度<1mm/s,基体因加热温度过高而被烧损,表面出现折皱以及气孔等质量问题。究其原因熔覆过程熔池内搅拌加剧,基体元素与金属粉末元素相互扩散严重,熔覆层开裂、变形敏感性明显上升。当激光功率P=1kW~2kW、扫描速度=2mm/s~4mm/s范围内均可得到较理想的激光熔覆层。此外,若加热温度过低无法充分熔化,难于达到修复模具的目的。扫描速度过大时出现熔覆层不连续现象,其结合强度不够。稀释率随扫描速度的增加,呈减小的趋势,而随送粉量的增大使稀释率有增加的趋势。
3.2工艺参数对模具修复宏观形貌的影响
试验表明,在P和变化不大时,激光熔覆表面宏观形貌与送粉量关系密切,在其它条件相同的情况下,随的增大,熔覆层宽度有所变化(有变小的趋势),而熔覆层厚度明显增加,接触角加大。完全可以利用调节的方法改善熔覆层表面不平度。
温压是,在120~150℃温度范围内,将由适量的粘结剂与剂系统和铁粉或低合金钢粉组成的预混合粉压制成形的一种压制工艺。温压最初是将预混合粉与压制的模具都加热到上述的温度范围;在这些温度下,由于铁的压缩屈服强度减低,伴随着软化,在接近PFD的密度情况下,在阴模内产生似等静压,从而使生坯达到了较高密度。值得注意的是,一般添加的剂数量为0.6%;因此,可得到较高的PDF。温粉压制结果表明,整个零件的密度较均匀,而且,和粉末冶金压制相关的中和区最小化。这种中和区减小是一种优势;因为密度的均匀性增大,意味着零件内部的性能较均一,对低密度区和其对最终零件使用性能的影响较少。
1)温压对生坯与烧结件的密度和力学性能的影响:温压可使粉末冶金零件的生坯与烧结件的密度分别增高0.10g/cm3、0.25g/cm3。图3示添加0.6%石墨的FD-0405扩散合金化粉预混合粉的生坯与烧结件的密度的改进结果。温压在较低压力下,可将生坯密度增高较大;其达到了在常规压制时,于较高压力下达到的密度。在较高的压制压力下,阴模型腔中的预混合粉已接近PFD;因此,进一步增高压力时,生坯密度将不会再增高,实际上可能产生过压,并使粉末冶金零件形成微小分层。图4(略)汇总了用常规与温压压制工艺,在410~690MPa的压制压力范围内,压制的扩散-粘结材料的横向断裂强度(TRS)的结果。表3中汇总了由各种预混合粉组成,温压的烧结件的力学性能。温压适用于所有的铁与低合金钢粉的混合粉。烧结件密度增高的多少取决于材料系统和随后的零件加工处理。添加铜的预混合粉在烧结时发生胀大,这对温压工艺无益;因此,认为对于含铜的预混合粉,不适于采用温压压制。在Donaldson等进行的试验研究中[10],将温压的粉末冶金零件,于871℃下进行了预烧结,随后在高达690MPa的压力下,于室温下进行了二次压制(整形)。二次压制后,在1120℃或1260℃下进行了烧结,制得的烧结件的密度达到了7.5~7.6g/cm3。当与密度为7.4g/cm3的烧结件相比较时,这些密度较高的烧结件,横向断裂强度增高了约15%;更重要的是,冲击能量增高了50%~80%。这些研究证明,对于温压零件,采用二次压制/二次烧结(DP/DS)工艺生产,可显著增高粉末冶金材料的力学性能。这类零件的综合力学性能等同于韧性铸铁和切削加工的碳钢锻件的性能。
2)增高生坯强度:温压工艺的较次要优势是,可增高零件压坯的生坯强度。生坯强度的增高,是由于粉末颗粒变形较大和在温压中使用的独特粘结剂与剂发生的最佳协同作用。生坯强度值的增高,是在密度显著低于PFD值水平下实现的(见图5)。这些数据表明,由于温压可增高生坯密度,其在应用于密度较低的零件时,可减小零件的损坏或零件易碎特征部分的碎裂。由于温压可增高生坯强度,从而使着可对生坯进行切削加工。在汽车变速器的粉末冶金换档拨叉的大量应用中,一直在采用生坯切削加工生产[13]。零件压制成形后,于生坯状态下进行铣削加工,这可减小零件的整个生产成本。用钼预合金化钢粉+2%Ni+0.5%石墨+0.6%剂的预混合粉温压后的生坯,通过钻削试验,进行了切削性研究。这项研究证明:在高速与高进给比的切削条件下,可得到令人满意的生坯表面粗糙度;另外,将标准钻头的几何形状从标准的90°横刃钻头改变为135°分裂点钻头,可改进切削表面的粗糙度。在确定生坯切削加工参数之前,建议先进行试验,检验钻头的几何形状、切削速度及切削进给比的效果。粉末冶金零件的生坯切削加工和烧结硬化相结合,可为零件设计者在零件设计与材料选择上提供较大的灵活性。
温模压制
关于用一次压制/一次烧结(SP/SS)得到较高生坯密度的第二个较新的方法是,仅只对模具加热,而不对粉末进行任何预热,将阴模加热到60~70℃温度范围之内。和温压工艺一样,为将密度比常规的预混合粉压制增高0.05~0.15g/cm3,这种工艺也综合有粘结剂与剂技术。和温压工艺一样,除了增高生坯与烧结件密度之外,此生产工艺还可以减少扬尘,改进流动性及增大阴模的充填量。这些因素都可以增高粉末冶金零件的一致性和质量。图6示用常规压制、温压及温模压制可得到的生坯密度的比较。温模压制的优势在于,可增高密度(0.05~0.15g/cm3)、附属设备较少及可减小粉末的损耗。不足之处有:由于传递到粉末中的热量有限和剂的总含量较低,零件的高度最高不大于25mm[16];要增高密度,压制压力需要>550MPa。对于温热粉末/温热阴模的方法来说,这种零件高度的限制,似乎不是问题,已经成功地生产出了高度高达63.5mm的零件。这两种温压工艺的生坯密度增高,都是依靠对粉末进行加热和减小添加于预混合粉中的剂的数量。就这一点而言,减小预混合粉中剂的含量时,剂必须使着易于脱模;因此,剂都是能满足压制方法要求的独特配方。
模壁
如上所述,减少添加于预混合粉中剂的数量,对增高粉末冶金零件生坯密度与烧结件密度都有重大影响。理论上,最需要添加剂的地方,是阴模模壁处。模壁不是一个新观念,可靠的模壁系统,一直在被研究与开发。过去的使用水基或溶剂基系统的研究成果,在装粉之前都需要一个干燥过程;静电系统的开发消除了干燥过程,并使着可将内部剂的总含量减小到0.2%~0.4%。依照图2(略)中的结果,这使着可将生坯密度增高0.15~0.25g/cm3,同时生坯与烧结件的强度也相应增高。模壁的其它优势还有,需要除去的内部剂含量较少,从而烧结过程中的排放物也相应地减少。图7(略)示内部剂的减少对生坯密度的影响;注意,生坯密度不可能>7.4g/cm3。模壁要在产业中被接受,实质上其喷涂技术必须可靠和能够用倾倒法装粉。
选择性表面致密化
增高粉末冶金零件芯部密度的好处在于:可增高齿轮的拉伸性能,改进弯曲疲劳耐久性及增高滚动接触疲劳(RCF)强度。鉴于粉末冶金零件的选择性致密化,可改进RCF耐久性和提高尺寸精度,因而日益受到关注。早期的试验工作表明了这种工艺是如何适用于大量的粉末冶金零件的;这种工艺还能成形齿轮的导程与轮廓的拱起部位,为最终用户提供的齿轮成品不需要进行后续加工。重要的是,认识到了选择性致密化与高的芯部密度相结合,制造出的粉末冶金零件的拉伸与弯曲疲劳性能和锻钢零件的性能相同。采用选择性致密化时,其RCF性能也和锻钢等同。这种独特综合性能,为用粉末冶金齿轮替代高负载汽车变速器齿轮提供了可能。表4(略)示采用高密度工艺加工的FLN2-4405的力学性能与淬火/回火处理的AISI8620锻钢性能的比较。AISI8620钢表明,其疲劳与冲击性能两者都有明显的方向性。#p#分页标题#e#
所有试验都是用切削加工的圆形试棒进行的。拉伸试验的结果表明:疲劳强度与冲击韧性值的变化都是纵向大与横向小;淬火/回火的疲劳试样的纵向比横向的值约高35%;有凹口冲击试样的纵向比横向的值大约50%;而无凹口试样的纵向与横向的值相差很小,只有1.5%。鉴于许多齿轮(例如,直齿轮)的负载都垂直于主工作方向,因此,材料的方向性很重要。螺旋齿轮是在两个方向负载,其取决于齿轮的螺旋角,例如,20%螺旋齿轮的负载大部分是在横向。在文献数据库中,往往引用的是纵向的力学性能,而很少列出横向性能。粉末冶金零件材料是各向同性的,鉴于中和区的密度减小,因此,在零件的中和轴线上的性能略微减小。采用先进的粉末冶金零件生产工艺时,可将中和区的密度减低显著减小。根据表4,粉末冶金零件的屈服强度与抗拉强度和锻钢相似;但伸长率与冲击值和锻钢相比,则明显减小。实质上,通过正确地选择合金与生产工艺条件,可得到同样的RCF性能。整篇论述主要集中于获得较高的生坯与烧结件密度的方法上,认为较高的烧结件密度,意味着较高的力学性能。近期,合金化的发展表明,在可比较的密度下,合金化也可以改进粉末冶金材料的力学性能。King等的研究表明:添加铬、硅、钼及镍可显著影响粉末冶金钢的力学性能;特别是,在同样密度下,铬与硅可显著增高粉末冶金钢的强度与冲击能量。对于这些先进的合金系统,可利用上述的得到较高密度的技术,并可相应地增高零件的使用性能。另外,用烧结硬化合金工艺可生产具有马氏体显微组织的粉末冶金零件,而且,其尺寸精度是用常规锻钢油淬火无法达到的。
因此,粉末冶金可提供所需的力学性能、尺寸精度及可行的生产成本。对于进一步增高密度,可能性是存在的。将模壁与SP/SS加热粉末工艺相结合,可使密度达到接近7.5g/cm3;开发新剂,其在较低含量的条件下,可有效地增高PFD;将DP/DS用于密度>7.6g/cm3的粉末冶金零件时,可使粉末冶金零件的性能增高到与粉末锻造零件相同。
结束语
关键词:粉末冶金;钕铁硼;专利
引言
随着经济社会的发展,作为第三代永磁材料的钕铁硼因良好的磁性能而在信息、通讯、计算机、风力发电、家用电机等领域的应用越来越广泛。我国凭借稀土资源优势和生产成本优势大力发展钕铁硼产业,已成为世界第一生产大国和消费大国[1]。文章就粉末冶金法(即烧结法)制备钕铁硼磁体材料中国专利申请的情况进行分析。
1专利申请概况
经过统计,截止2016年4月12日(以公开日为准),向中国国家知识产权局提交的涉及钕铁硼磁性材料的专利申请共计1037件,其中发明792件,占比76.4%,实用新型245件,占比23.6%。一般而言发明专利的技术含量和创新性要高于实用新型专利,也最具有经济价值和社会价值,而该领域的发明专利申请的数量远高于实用新型的数据量,说明在该领域专利申请的平均技术含量较高。
图1为近30年来,向中国提交的专利申请数量的趋势图,其中以5年为一个统计时间段,考虑到专利申请到公开需要一定的时间,图1的数据统计到2014年底(以申请日为准)。从图1中可以看出,2000年以前的专利申请量很少,2000-2010年间,粉末冶金制备钕铁硼的出现了快速增长,说明该技术发展较快,在2010年以后,专利申请的数量出现了大幅度的增长,这说明粉末法制备钕铁硼磁体进入了蓬勃发展的时期,从业者的专利意识不断加强,专利布局在企业的市场竞争中作用凸显。
2申请人分析
从申请人所在国/地区分析,以中国最多,占比92.09%,其他为国外申请。在国外申请中以日本申请的最多,占比6.46%,其次为美国,占比1.06%,韩国申请2件、法国和香港地区各1件。从中可以看出,日本在粉末法制备钕铁硼磁体领域技术研究较多,而且注意在中国进行专利布局。
经过统计分析得出该领域排名前10的申请人(含共同申请人)为:北京中科三环高技术股份有限公司、安徽大地熊新材料股份有限公司、日立金属株式会社、北京工业大学、沈阳中北通磁科技股份有限公司、中国科学院宁波材料技术与工程研究所、北京科技大学、浙江大学、中磁科技股份有限公司、宁德市星宇科技有限公司。从中可以看出,重要申请人中既有企业,也有大学、研究所,可见该领域的产学研发展模式较为合理。值得注意的是,在重要申请人中有日本企业,加之日本在钕铁硼磁体领域研究、生产上的重要地位,国内相关企业应更加重视前沿技术的研发、专利的申请,以免处于被动局面。
3发明人分析
分析发明人发现,排名前10的发明人为:孙宝玉、衣晓飞、陈静武、熊永飞、岳明、严密、严阿儒、刘卫强、张东涛、李东,其中孙宝玉是重要申请人沈阳中北真空磁电科技有限公司、沈阳中北真空设备有限公司、沈阳中北通磁科技股份有限公司的员工,衣晓飞、陈静武、熊永飞为安徽大地熊新材料股份有限公司的员工,岳明为北京工业大学的老师,严密为浙江大学的老师。可见,该领域的重要发明人主要集中在企业员工和高校从事研究的老师,而且重要发明人大多分布在申请人单位。
4重点技术分析
粉末冶金制备钕铁硼的专利申请主要分为产品和方法两类,其中产品主要包括粉末法制备的钕铁硼磁体材料、制粉装置和粉末成型装置,而方法主要涉及制备钕铁硼产品的系统工艺流程、烧结工艺方法、改善组织性能的方法等,其中尤以提高钕铁硼永磁材料的磁能积、矫顽力、改善磁性材料的晶粒、晶界等方法居多。
5结束语
粉末冶金制备钕铁硼磁体材料时当前制备永磁材料的热点,也是当前专利申请聚焦的一个重点领域,申请人应该在充分了解国内专利申请状况的基础上,找准前沿技术的研究方向,围绕技术研发的热点进行深入研究探索,并采用合理的专利申请进行布局,充分利用知识产权保护研究成果。
现行生产工艺有几大类:
1)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合后(按一定比例)用油压机或等静压压制成工艺所需的形状,用高于自熔性金属合金熔点的温度下,进行烧结;
2)将制备好的氧化物陶瓷颗粒与自熔性金属合金粉末混合烧结,是利用自熔性金属合金与氧元素结合能力的差异,将金属从其氧化物中置换出来,形成氧化物陶瓷/铁基耐磨复合材料;
3)将自熔性金属合金熔液熔渗到陶瓷预制体多孔之中。上述方法只能生产小型复合材料块,无法将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上难度很大。此工艺经济性稍差。
2研究方向
氧化物陶瓷铁合金复合材料性能优良,但与大型结构件复合复合困难,制备过程比较复杂。虽然,现有工艺解决了一些问题,在制作单个氧化物陶瓷铁合金复合材料上等研究取得了一定的进展,在实际应用领域但仍未开发出适合实际的产品。因此,需要研究开发出适合的新型制备工艺。我们主要研究方向是如何将复合材料复合到需要耐磨的部位,运用到矿山机械、粉碎设备上,重点在能降低成本、实现大规模生产进行研究探讨。
3实施方法
1)合金耐磨预制件制成工艺:将氧化物陶瓷颗粒与自熔性合金粉末按比例用机械进行充分混合,依据用户产品结构不同设计不同的模具,在油压机下将合金耐磨预制件压制制成特定形状,如柱状、条状、块状、蜂窝状等;
2)冶金工艺:将耐磨预制件置于用泡沫、塑料等高分子有机材料制作的实体模具内用真空冶金铸造工艺进行复合铸造。利用金属母液的温度将合金耐磨预制件烧制成型并与合金耐磨预制件形成冶金结合面。该工艺设备投资小、工艺简单、金属母体与耐磨预制件冶金结合面良好。
4工艺过程
1)将粒径为8目的氧化物陶瓷颗粒10%、粒径为30目的氧化物陶瓷颗粒39%、粒径为60目的氧化锆陶瓷颗粒48%与自熔性铁基合金粉末7%,使用水溶性树脂4%机械混合均匀得混合物,放入油压机中用模具压制成型然后放入80°C的烘箱中烘干得到耐磨预制件;
2)将耐磨预制件在800℃的箱式炉中进行排胶;
3)将排胶后的耐磨预制件涂抹硬钎剂;
4)将涂抹硬钎剂的耐磨预制件置于用泡沫、塑料等高分子有机材料制作成为与要生产铸造的零件结构、尺寸完全一样的实体模具内;
5)实体模具经过浸涂强化涂料并烘干后,装入真空造型砂箱中排列好做好浇铸口,然后用干石英砂埋好,经三维振动台振动埋实;
金刚石可切削性指标主要选择刀具磨损和工件表面质量。由图5和图6可以看出,深层渗氮纯铁的金刚石可切削性较好,其中渗氮纯铁试样的表面粗糙度值在6nm以下,刀具磨损主要以微崩刃为主,崩刃长度约35μm,原因可能是主轴转速较高而且ε-Fe2-3N相脆性较强,切削时易引起高速冲击,可以通过控制工艺参数使刀具磨损进一步减小。传统认为金属材料可被加工出镜面质量与其中某些重要微量元素及其分布有关。此次纯铁渗氮层成分主要为Fe2-3N,几乎无其他元素,说明Fe2-3N物质本身具有被金刚石加工出镜面质量的潜质。由此得到一个启示:氮化铁材料适合金刚石超精密切削。表面改性的实质是在被加工件表面制造了一种新材料,然后对此化合物层进行切削。如果有针对性地将表面改性方法中几个缺陷加以克服,直接制备出整体单相可控、杂质很少的氮化铁(或加入微量有益于减少刀具磨损和提高表面质量的合金元素)工件材料,将非常有可能解决黑色金属的金刚石超精密切削问题。
2氮化铁粉末冶金钢的金刚石可切削性实验研究
2.1氮化铁粉末冶金钢的制备
氮化铁材料的制备研究可以追溯到20世纪50年代初,Jack最早确定了Fe-N相图,并从结构上分析和确定了相、相、相和相及其他氮化铁。这些氮化铁在强度、硬度和韧性等方面有着各自不同的特点。由于氮化技术在表面强化方面具有明显的优势,所以被广泛用于动力机器制造工业。近年来,由于氮化铁具有优异的软磁性能和良好的耐腐蚀和抗氧化性,被应用在了制作磁记录介质、磁感元件和吸波材料等方面,受到了广泛的关注[9]。国内东北大学佟伟平教授[10,11]]以及西南交通大学杨川教授的课题组[12,13]等在单相氮化铁纳米粉体制备以及铁氮粉末冶金方面做了大量研究。粉末冶金是制取金属粉末或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制取金属材料、复合材料以及各种类型制品的工艺技术[14],已成为新材料科学和技术中最具有发展活力的领域之一[15],而铁基粉末冶金材料是最重要的粉末冶金材料之一。西南交通大学杨川教授的课题组采用将一般纯铁粉进行模压成形方式加工成生坯,在烧结过程中进行渗氮处理的方法制备铁氮粉末冶金零件取得了一定效果,其烧结后的主要成分由Fe和Fe4N两相组成(部分原因是烧结温度高,导致脱氮),孔隙度为8.73~11.14,密度为6.2035~6.591g/cm3,硬度为128.3~307.1HV。本研究采用此材料进行初步切削实验。
2.2切削实验结果及讨论
实验条件及实验装置同图4,金刚石切削氮化铁粉末冶金钢所产生的刀具磨损和工件表面质量分别如图7、图8所示。金刚石刀具在直接切削相同面积的模具钢时,VB值达16μm,而金刚石刀具切削氮化铁粉末冶金钢后的VB值仅为1.16μm。与直接切削模具钢相比后刀面磨损明显减小。工件端面靠近圆心处的表面粗糙度为64.34nm(实验最大切削距离处)。在靠近端面外侧附近还观察到了如图9所示的孔隙。尽管氮化铁粉末冶金钢的各项指标(孔隙度、密度、硬度以及成分等)与光学级模具型芯材料的要求还有一定距离,但此结果已经说明了氮化铁材料的金刚石可切削性较好。还需要进一步提高各项指标以达到模具钢的性能要求,以及严格控制其成分,如果能进一步控制氮化铁为某一单相,从而还可以验证是哪种相对减少金刚石刀具磨损起着关键作用,进而可以揭示工件表面改性方法的内在机理。
3结论