起点作文网

废水净化处理的方法(6篇)

时间: 2025-11-04 栏目:实用范文

废水净化处理的方法篇1

1、生态环保,1970年4月22日,美国哈佛大学学生丹尼斯·海斯(DennisHayes)发起并组织保护环境活动,得到了环保组织的热情响应,全美各地约2000万人参加了这场声势浩大的游行集会,旨在唤起人们对环境的保护意识,促使美国政府采取了一些治理环境污染的措施。后来,这项活动得到了联合国的首肯。至此,每年4月22日便被确定为“世界地球日”。

2、废水处理,废水处理(wastewatertreatmentmethods)就是利用物理、化学和生物的方法对废水进行处理,使废水净化,减少污染,以至达到废水回收、复用,充分利用水资源。

3、废气处理,废气处理又称废气净化。废气处理指的是针对工业场所、工厂车间产生的废气在对外排放前进行预处理,以达到国家废气对外排放的标准的工作。一般废气处理包括了有机废气处理、粉尘废气处理、酸碱废气处理、异味废气处理和空气杀菌消毒净化等方面。

(来源:文章屋网)

废水净化处理的方法篇2

随着新课程的实施,中学实验课增加了很多,实验后产生的废水量也越来越多。如果这些废水不加以处理而直接排放到下水道,尤其是化学实验后产生的废水,将会给所在城市的水处理系统造成严重的负担,不仅会增加污水处理的难度,也会对水资源造成极大的污染。

目前,新闻报道的多数针对高校、科研机构、检测机构和企业中的检验研究部门中的化学实验室废水,排放的特殊性、对环境的危害性及处理方法。这些部门排出的废水成分复杂,除无机物外还有重金属离子、细菌等微生物和有机物,处理药剂品种繁多。但针对中学实验室这方面的研究报道较少,而中学实验室废水的成分比较简单,含量较低,更易于处理。本文提出了净化处理实验室废水方案,并充分利用实验室现有器材设计了废水净化的流程图和操作装置,简单易行,既可减轻污水处理厂后续去除废水中杂质的负担,又为日后各中学化学实验室建设和废水处理提供一个参考方案。

一、实验室废水处理流程及装置

需要先收集每次实验后产生的废水,经过以下流程图来逐级进行净化操作,处理后的净化水可以直接排放,或回收再利用。具体操作过程如图1和图2所示。

图1化学实验室废水处理流程图

图2化学实验室废水的净化操作过程

对于处理过程中产生的有毒有害气体,如氯气等,需要回收或吸收,防止实验室内空气污染。如果实验室处理后的清水水质很好还可以回用,如冲洗厕所、浇灌花卉绿地等,这样可以节约大量水资源。如果出水水质一般,可以直接排放到下水道。特别提示,有些实验废水的酸性或碱性较强,需要考虑收集容器的防腐蚀问题,或需要用相应的废酸或废碱来中和。

二、化学实验室废水的处理方法

1.收集并分析化学实验室废水的主要成分

用实验室现有的下口玻璃瓶作为废水收集的容器(如图3所示),出水口在下方,有胶皮管和止水阀,便于取水。

图3

分析每次实验后收集起来的废水水质前,需要了解本次实验内容和所用药品类型,确定杂质离子的种类。观察废水中是否有固体物质,是无机化学沉淀物还是有机物,列表并记录。

2.调整废水的pH值

先用pH试纸或酸度计测定废水的pH值,以确定酸碱中和需要用废酸废碱(以废治废)的量和浓度,以防腐蚀设备,同时可以预先产生大量的沉淀物。

3.用化学沉淀法来分离废水中的可溶性离子

选择化学药品时要把握“种类少、用量省、价格便宜”的原则,根据废水的成分分批处理。Ca2+,Ag+,Ba2+,SO42-,Cl-等离子容易转变为沉淀和气体,而K+,Na+,NO3-等可溶盐离子用此法难以除掉。这种处理方法的缺点是,因加入化学药品而使水引入新的杂质,造成二次污染。

4.化学污泥的沉淀和过滤

通过上述化学沉淀法会得到大量的固体沉淀,需要进一步和水分离。先将反应后的混合液静置一段时间后,沉淀就会沉降到容器的底部而使溶液分层。若使用离心机进行离心分离,几分钟内就能完成。再将分层后的上清液进行过滤,进一步除去没有沉淀下来的固体。也可用真空抽滤器,几分钟内完成。

5.自制多滤层的废水净化器

取一个2~5L空饮料瓶或塑料桶,剪去底部,瓶口用单孔橡胶塞塞住,连接玻璃导管和橡皮导管(带止水夹)。将饮料瓶口朝下倒置,瓶内由下至上分层放置膨松棉、洗净的铁丝网(起支撑作用)、双层纱布、活性炭、双层纱布、混合后的阴阳离子交换树脂、双层纱布、石英砂和小玻璃珠(本试验中因石英砂和小玻璃珠的大小形状和粒径相近而混装)、铁丝网,最上层是多层纱布(可根据实际情况随时更换和清洗后再用)。

把经过沉淀和过滤后的废水的上清液倒入自制废水净化器,可进一步减少其中的悬浮物、离子和有色物质。

6.用活性炭吸附和脱色

废水中的某些有色物质,如酸碱指示剂反应后的产物、苯酚等有机物,如果浓度较大,也需要进行脱色处理。我们选择多孔、比表面积大、吸附和脱色性能好的活性炭,即可以吸附水中的细小固体杂质,还可以吸附可溶性的有色有机小分子。

7.电解法回收金属

高中学校实验室总会产生大量的高浓度的铜离子废水,我们用电解法先降低铜离子的浓度。用化学教科书上的电解实验装置处理废水,效率较低,有局限性。因此我们选择用图4所示的具支U形管,把阴极和阳极分开进行电解。用U形管电解实验来回收金属,如实验室CuCl2废水的处理,阴极和阳极附近的产物易分离,易回收。在阴极产生Cu,阳极产生Cl2。经过以上方法处理后,废水中的离子还有许多,如果想提高水质而回用,可采用电渗析技术。

图4电解CuCl2实验前中后溶液的变化

为了防止电解后产生的大量尾气污染空气,可在阴极支管端用小气球密封和收集少量的氢气,阳极支管端连接倒置的小漏斗来用浓碱吸收大量有毒的氯气。同时可以在阴极收集到大量的金属铜。电解后的废水再次收集器,进行下一步处理。

8.难沉淀的钠离子、钾离子、硝酸根等离子的电渗析

人造渗透膜(阴、阳离子交换膜)对要交换的离子具有选择性和透过性,水分子也可以自由通过。这种电渗析法膜处理技术,在现代工业水质净化中应用很普遍,但对于高中生则很陌生。它适合处理浓度较小的废水,否则会堵塞膜孔,影响出水水质甚至降低膜的使用寿命。它的优点是占地面积很小,处理的水量却很大,适合化学实验室使用。

电渗析装置在接通电源后会产生电场推动力,选择性地使阴、阳离子透过交换膜而分离溶质和水。一般,阴离子交换膜又叫阴膜,只容许阴离子通过;阳离子交换膜又叫阳膜,阳膜只让阳离子通过。图5为电渗析处理系统其中的一个单元,化学实验室可根据废水量而选择多个单元组成。

图5电渗析处理废水过程

电渗析装置工作过程:将已经过前处理的废水引流到废水入口处,经过半透膜通道时,其中的杂质离子分别通过阴膜和阳膜成为浓缩水而分别汇集到排污口,回收利用。这种电渗析装置可在常温常压条件下进行操作,浓缩分离同时进行,不需投加药品,出水的水质好,可再利用。目前电渗析法还被广泛应用到许多领域,如自来水厂和发电厂制取纯水,海水或苦咸水的淡化处理,酸洗废水回收硫酸和铁,芒硝回收硫酸和碱等。

如果我国所有的化学实验室都配备一套废水处理器,既节约了水资源,使废物资源化,又提高了下水管道的使用寿命,减少了污水处理的费用,还在广大学生中树立了环保节约意识。

参考文献

[1][英]TomStephenson.膜生物反应器污水处理技术[M].北京:化学工业出版社,2003

废水净化处理的方法篇3

关键词:重金属离子;净化;新型材料

DOI:10.16640/ki.37-1222/t.2017.12.047

含有重金属离子的污染物进入水体会造成水体的重金属离子污染。矿冶、机械制造、化工、电子、仪表等工业生产过程中产生的重金属工业废水对人类健康和自然生态系统都会有影响[1],因此,水中的重金属离子必须得到妥善处理。本文介绍目前国内外处理废水中重金属离子的方法,如活性炭吸附法,总结了各种方法的优缺点,最后展望了废水中重金属处理方法的发展趋势。

1水中重金属离子可采用的净化方法

1.1沉淀法

沉淀法一般是通过化学反应把水体中的重金属离子从游离态的转变为含重金属的沉淀物,再过滤和分离处理,使沉淀从水中分离,包括中和、硫化物、铁氧体共沉淀几种方法[2]。各种处理技术的操作分别如下:把碱加入到含重金属的废水中,重金属会转变为不溶于水的氢氧化物沉淀,然后将沉淀物分离,该法操作耗时少,简单;把硫化物类的沉淀剂加入废水中生成硫化物沉淀而除去重金属也常用;先将铁盐向废水中投加,然后控制工艺条件,使金属离子形成不溶性的铁氧体晶粒,最后固液分离,从而达到去除重金属离子目的。

1.2电解法

电解法用于重金属离子的净化是一种相对成熟的废水净化处理技术[3],不仅污泥的生成量能有效的减少,而且能高效地回收某些贵金属。其基本原理是电解过程中,氧化和还原反应分别在阳、阴两极上发生,有害物质在氧化还原作用下转化为无毒无害物质,实现废水的净化。电解法技术去除率高、可回收所沉淀的重金属加以资源优化,二次污染情况少、处理过程中所使用的化学试剂量少;常温常压下,操作管理简便;废水中污染物的浓度发生波动时,通过电流电压的调整,可保证出水水质的稳定;整套装置的占地面积不大,有效节省空间。

1.3氧化还原法

废水中的重金属离子在氧化还原作用下生成无毒无害的新物质,其实质是在氧化还原过程中,无机物元素的原子或离子在失去或得到电子的过程中会导致元素化合价的变化,是用于治理电镀废水的最早方法之一[4],此法原理简单、操作好掌握、λ量和高浓度废水的冲击承受大。一般根据还原剂的种类可以分为NaHSO3法、FeSO4法、SO2法、铁屑法等。

1.4膜分离新型处理技术

该技术可以在分子水平上,利用混合物分子具有不同粒径的特征,在通过半透膜时可实现选择性分离,包括电渗析滤膜、反渗透滤膜、萃取滤膜、超过滤滤膜等。电镀工业废水经过膜分离处理后的废水组成稳定,并可回槽使用。膜分离废水净化技术是近年来发展最迅速的高新技术,分离效率高、分离过程中不会发生相变且不会化学反应、分离器体积小、低能耗和方便操作等,广泛应用于物质的分离与浓缩,具有广阔的发展前景,在废水处理中已受到特别的青睐[5]。

1.5高效离子交换法

离子交换处理法是利用离子交换树脂、沸石等交换剂分离废水中有害金属离子的方法。离子交换树脂主要有凝胶型和大孔型两种,前者有选择换功能,后者制造很复杂、高成本、再生剂耗量大。交换剂将自身所带的能自由移动的离子通过与被处理的溶液中的离子进行交换来实现净化目的。离子间的浓度差和功能基对离子的亲和能力是离子交换的推动力,多数情况下交换剂的离子是先被吸附,再被交换,具有吸附、交换的双重作用[6]。

1.6生物净化处理技术

生物技术治理废水日益受到人们的关注,根据净化机理的不同,可分为絮凝法、吸附法、化学法以及植物修复法。利用微生物或其产生的代谢物来实现絮凝沉淀;利用生物体本身的特殊化学结构及特性成分来吸附水中的金属离子,最后通过固液两相分离去除金属离子的方法也广受关注[7]。

1.7吸附净化处理法

重金属离子可利用吸附剂的独特结构特点来除去,常用吸附剂有活性炭、腐植酸、海泡石、壳聚糖树脂等。该法要求对水进行预处理,因为吸附剂自身的价格一般较昂贵,所以主要用于微量污染物的净化处理,也常用于从高浓度的废水中吸附某些有用的特定物质以达到资源回收和治理的目的。目前,应用于工业废水处理的吸附剂主要有活性炭和生物吸附剂。一些尚处于实验室模拟阶段的吸附剂有粘土类、高分子、利用废弃物制备的吸附剂和复合吸附剂等。其中活性炭可用于净化去除大多数的重金属和有机分子,具有较强的吸附能力,但由于其使用成本相对昂贵、复杂的工艺操作和运行管理,因而很多地区难以得到广泛的应用。绝大部分吸附剂可能存在吸附效率低,产生二次污染无法解决等问题。介孔材料经过功能化处理后,特殊的功能基团对重金属的吸附能力强,还可以选择性地吸附水中重金属离子,并且在适当条件下可以进行再生,实现吸附材料的重复使用,并且吸附效果仍然非常可观[8]。

2重金属净化处理方法的缺点

化学沉淀法处理金属离子废水往往出水浓度达不到要求,沉淀剂的使用工艺和操作的环境条件等方方面面都会影响出水质量,产生的沉淀物需作进一步处理,否则容易造成二次污染。电化学法在运行过程中的电耗和电极金属会产生大的消耗量,沉淀物质分离出来后不能够直接处理利用,整体操作成本较高。氧化还原法需要加入特定的氧化剂或者还原剂,不可避免会导致处理废水的成本大大升高,不同的有害物质还必须采用特定的试剂来处理,反应后的废液的后处理也不是件简单的事情。膜分离法虽然处理金属离子的效率高,但是膜材料的生产和预处理成本也很高,特别是膜组件价格贵,膜容易受污损等等问题制约了膜分离技术在废水处理领域的广泛应用。离子交换法在处理金属离子废水的过程中难免会产生过量的再生废液,处理周期长,耗盐量也蛮大,排出大量含盐废水特别容易引起输送管道的腐蚀。离子交换树脂使用过程中容易受到多种有机物的干扰和污染,当溶液中含有多种不同元素的离子时,缺乏普遍适用性。生物吸附材料能够对重金属离子进行有效地吸附,但是目前研究发现,具备高吸附容量,而且能够选择性吸附的廉价生物材料很稀缺,真正实现市场化还需要进一步的深入研究和不断探索。

3介孔材料用于重金傥附处理的研究趋势

介孔功能吸附材料在金属离子净化处理的研究中发现,操作简单、具有吸附容量高、选择吸附性,能够反复使用等特点,对于它的研究比较多[9-20],这些优点将可望成为处理重金属离子污染的有效解决途径。介孔材料在水处理方面也有一些问题还没有解决,比如功能化介孔材料对指定的特殊重金属离子的吸附,介孔材料功能化的工艺参数,如接枝基团的种类和数量等的控制,介孔材料对重金属离子的吸附机理的研究也不透彻。介孔材料吸附重金属离子后的再生材料吸附效率也是一个研究的方向。从操作和经济可行性方面考虑,介孔材料今后的发展趋势或者目标有:1)吸附和脱附速度快;2)生产成本低,能够重复使用;3)有一定的理想粒度,形状和机械强度,能够在连续流系统中应用;4)具有对重金属离子的选择吸附性;5)脱吸附后吸附剂的损失量小,经济上可行。

参考文献:

[1]FenglianFu,LipingXie,BingTang,QiWang,ShuxianJiang.Applicationofanovelstrategy-AdvancedFenton-chemicalprecipitationtothetreatmentofstrongstabilitychelatedheavymetalcontainingwastewater.ChemicalEngineeringJournal,2012,283-287.

[2]Jun,D.,Bowen,L.,Qiburi,B.InsitureactivezonewithmodifiedMg(OH)2forremediationofheavymetalpollutedgroundwater:ImmobilizationandinteractionofCr(III),Pb(II)andCd(II).JournalofContaminantHydrology,2017,50-57.

[3]YingX.,Zhang,C.S.,Zhao,M.H.,Rong,H.W.,Zhang,K.F.,Chen,Q.parisonofbioleachingandelectrokineticremediationprocessesforremovalofheavymetalsfromwastewater.

[4]Fontmorin,J.M.,MikaS.Bioleachingandcombinedbioleaching/Fenton-likeprocessesforthetreatmentofurbananaerobicallydigestedsludge:Removalofheavymetalsandimprovementofthesludgedewaterability.SeparationandPurificationTechnology,2015,655-664.

[5]Nithinart,C.,Scott,M.Husson.High-capacity,nanofiber-basedion-exchangemembranesfortheselectiverecoveryofheavymetalsfromimpairedwaters.SeparationandPurificationTechnology,2017,94-103.

[6]Deepak,P.,Gaurav,S.,Rinku,T.Pectin@zirconium(IV)silicophosphatenanocompositeionexchanger:Photocatalysis,heavymetalseparationandantibacterialactivity,ChemicalEngineeringJournal,2015,235-244.

[7]Sami,G.Biosorptionofheavymetalfromaqueoussolutionusingcellulosicwasteorangepeel,EcologicalEngineering,Volume99,February2017,134-140.

[8]Enshirah,D.Adsorptionofheavymetalsonfunctionalized-mesoporoussilica:Areview.MicroporousandMesoporousMaterials,2017,145-157.

[9]Jihoon,K.,Seung,Y.K.EfficientandselectiveremovalofheavymetalsusingmicroporouslayeredsilicateAMH-3assorbent,ChemicalEngineeringJournal,2017,975-982.

[10]BingyanLan,RuihuanHuang,LaishengLiCatalyticozonationofp-chlorobenzoicacidinaqueoussolutionusingFe-MCM-41ascatalyst[J].ChemicalEngineeringJournal,2013,(219):346-354.

[11]BelhadjB,CameselleC,AkretcheDE.Physico-chemicaleffectsofion-exchangefibersonelectrokinetictransportationofmetalions[J].SeparationandPurificationTechnology,2014(135):72-79.

[12]Shiau-WuLai,Hsiu-LiLin,TLeonYu.Hydrogenreleasefromammoniaboraneembeddedinmesoporoussilicascaffolds:SBA-15andMCM-41[J].Internationaljournalofhydrogenenergy,2012(37):14393-1440.

[13]LHajiaghababaei,BGhasemi,ABadiei,et,al.AminobenzenesulfonamidefunctionalizedSBA-15nanoporousmolecularsieve:asanewandpromisingadsorbentforpreconcentrationofleadandcopperions[J].JournalofEnvironmentalSciences,2012,24(07):1347-1354.

[14]ShengjuWu,FengtingLi,RanXu,etal.Synthesisofthiol-functionalizedMCM-41mesoporoussilicasanditsapplicationinCu(II),Pb(II),Ag(I),andCr(III)removal[J].JournalofNanoparticleResearch,2010(12):2111-2124.

[15]ToshiyukiYokoi,YoshihiroKubota,TakashiTatsumi.Amino-functionalizedmesoporoussilicaasbasecatalystandadsorbent[J].AppliedCatalysisA:2012,421(422):14-37.

[16]XinqingChen,KoonFungLam,KingLunYeung.SelectiveremovalofchromiumfromdifferentaqueoussystemsusingmagneticMCM-41nanosorbents[J].ChemicalEngineeringJournal,2011(172):728-734.

[17]GGrigoropoulou,PStathi,MAKarakassides.FunctionalizedSiO2withN-,S-containingligandsforPb(II)andCd(II)adsorption[J].ColloidsandSurfacesA,2008(320):25-35.

[18]ThanaponSangvanich,VichayaSukwarotwat,RobertJWiacek.Selectivecaptureofcesiumandthalliumfromnaturalwatersandsimulatedwasteswithcopperferrocyanidefunctionalizedmesoporoussilica[J].JournalofHazardousMaterials,2010,(182):225-231.

[19]HanYJ,StuckyGD,ButlerA.MesoporousSilicateSequestrationandReleaseofProteins[J].JournaloftheAmericanChemicalSociety,1999,121(42):9897-9898.

废水净化处理的方法篇4

焙烧污水治理技术自最初引进国外技术,经过国内多年生产实践及实验研究已趋于成熟,国内已先后建成6套系统。本次焙烧污水治理工程总结吸收了已有企业生产经验及实验成果,设计时对流程中的部分环节进行了针对性改进,改进后的污水处理流程已于1998年10月投入运行。

一、污水的来源及水质

处理的污水由阳极焙烧烟气洗涤塔排出的部分洗涤液和成型机沥青烟气净化系统喷淋洗涤沥青烟气排出的废水组成,污水总量为20m3/h。

1、焙烧烟气净化洗涤污水水量及水质

污水量:17m3/h

F-:470mg/l

SO2-4:2058.8mg/l

焦油:294.1mg/l

粉尘:823.5mg/l

2、成型工段沥青烟气处理污水水量及水质

污水量:3m3/h

焦油:340mg/l

混合污水水质:F-:400.01mg/l

SO2-4:1749.98mg/l

焦油:301mg/l

粉尘:699.98mg/l

二、污水处理机理及处理流程

1、处理机理

烟气净化污水处理采用化学沉淀法,投加化学反应剂CaCl2和助凝剂PAM及Fe-Cl36H2O,污水中所含F-及部分SO2-4转化为溶解度较小的CaF2和CaSO42H2O,在不同性能的两种助凝剂作用下,形成絮凝团沉降。(略)

三、系统及运行操作要求设计改革

本次阳极焙烧污水处理工程针对以上分析,在流程配置、防腐、药剂使用、废水回用、运行管理等方面进行了以下改进:

1、增加污水预处理

由于污水中含有大量焦油及粉尘等易沉物,直接进入化学处理系统,不但增加药剂用量,而且将会降低处理效果,同时焦油会增大箱式压滤机的维护工作。故在污水进入反应槽之前,增加预处理设施非常必要,本次设计污水首先进入沉淀池,设置撇油刮渣设备,同时设置旁流除油污水过滤器进一步除油,为后续化学反应提供较单纯水质,减轻负荷。沉淀池污泥燃值较高可返回生产工艺流程或锅炉焚烧。

2、助凝剂使用

采用近年使用效果较稳定的两种助凝剂PAM及FeCl36H2O代替单一的PAM助凝剂。

3、贮罐、剂量泵、管道防腐

由于FeCl36H2O溶液及CaCl22H2O溶液腐蚀性较强,系统又要求在中性或弱酸性条件下,本次设计在防腐处理上进行改进。FeCl36H2O溶液、CaCl22H2O溶液以及PAM溶液的计量泵在与设备厂联系后确定分别采用HastelloyC型、HastelloyB型和1Cr18Ni9Ti型材料防腐。贮罐(槽)采用5mm厚的玻璃钢防腐,管道采用钢衬聚丙烯复合管,阀门采用聚氯乙烯阀门,管道、设备连接均采用特制法兰连接,接口处严格密封,以充分保证防腐质量。

4、废水回用

经处理后的废水考虑返回焙烧烟气净化洗涤塔循环使用,以避免废水的二次污染。由于废水因用为首采用,运行中可能存在预计不到的问题,设计中废水按可回用及直接排放两套措施设计,以保证正常生产。

废水回用可能存在的问题:废水回用将使阳极焙烧烟气净化整个系统(含烟气洗涤循环系统)总盐份增加,使处理系统必须重新建立污水污物、水处理使用药剂量与水处理排出污泥携带污物相互之间的平衡,形成平衡后的循环水质,该循环水质对系统的影响尚须在实际生产中逐步研究。直观分析处理后废水水质远优于烟气净化系统自循环水质,该部分废水将可以用于循环使用。

5、污泥压滤系统改进

过去设计当中污泥直接泵入压滤机,压泥管无回流管,由于泵与压滤机能力的不完全匹配,易出现压滤机冒槽现象。本次设计设置污泥泵送泥返回管路,污泥由泵可直接送压滤机,也可部分或全部返回泥浆槽,可随意调节压滤机上泥量和上泥压力,从而保证压滤机PLC控制系统运行更可靠。

6、运行要求

由于系统在去除氟污染的同时,考虑部分去除硫化物,为提高处理效率和有利于废水的回用,要求系统必须在中性或弱酸性条件下运行,而焙烧烟气净化洗涤系统循环用水希望PH值高,实际生产中需要逐步摸索,确定合理的运行PH值点。

废水净化处理的方法篇5

关键词水产养殖;水体处理;水质净化;方法

中图分类号S959文献标识码A文章编号1007-5739(2014)03-0234-02

随着规模化水产养殖业的发展,养殖水体污染问题日益严重,来自水产养殖的环境负荷是水环境恶化的重要原因,成为人们关注的焦点[1]。因此,挖掘集约化水产养殖业内部的节水环保潜力意义重大。现对常用的水体处理方法应用现状进行综述,分析当前生物净化技术,对生态农业健康渔业提出一些展望。

1水产养殖水体自然生物处理方法

使用自然生物处理池塘养殖水体的方法一般有稳定塘、自然湿地及利用土地处理等方法,其优势是对于处理含TN和TP的养殖水体,具有较好的处理效果。非规模化水产养殖的自然水体本身类似于典型的自然湿地生态系统,具有一定的自净能力,在充分合理地利用其自净能力的情况下,能够较好地净化池塘养殖水体,并且经济合理。池塘的水生生态系统本身就有较强的自净能力,对渔业养殖水体的处理中,可以充分合理利用池塘的水生生态系统对污染物的净化能力来处理渔业养殖污水。

2水产养殖水体物理处理方法

2.1机械过滤法

由于渔业养殖废水中的生物排泄物和剩余饵料等主要以悬浮物形式存在,因此采用机械过滤去除是最为便捷、高效的处理方法。常用的过滤设施有砂滤器、压力过滤器、机械过滤器等[2]。在水产养殖废水处理工程实践中,机械过滤器使用较多,分离效果较好,其工作原理是将通过喷淋管喷洒到过滤箱,过滤箱内的过滤器和小粒径沸石颗粒过滤后的水返回到水池。

2.2光照处理法

光照处理作用机理是通过将微生物的DNA链断裂,造成微生物永久失活,从而达到灭菌的目的。光照处理系统对渔业养殖废水具有明显的处理效果,对渔业养殖废水中的NO3--N、NO2--N、NH4+-N、TP、COD的处理效率分别为52.5%~61.73%、48.9%~57.86%、68.91%~80.07%、41.56%~49.87%、13.86%~25.68%[3]。光照处理法利用光照对池塘养殖废水进行处理,具有成本低、操作易、处理后出水水质稳定的特点。

2.3泡沫分离法

泡沫分离法是利用气泡的气液界面可吸附、浓缩污浊物质的性质,从而分离去除水中污浊物质之浮选分离法的一种方法[4]。泡沫分离和臭氧消毒设备对渔业养殖水体中异养微生物、NH4+-N、NO2--N处理效率分别为86.72%~94.66%、36.56%~40.21%、37.59%~39.12%,能明显提高水体溶解氧,对COD的处理效果较低;连续工作24h后,能有效降低渔业养殖水体中的NO2--N的含量和异养微生物数量。泡沫分离法处理效果一般,在泡沫分离设备处理后位置比处理前位置的NH4+-N、NO2--N和COD浓度能降低38.92%~43.45%、23.65%~28.71%、10.52%~13.85%,但能明显提高出水溶解氧含量。

3水产养殖水体化学处理方法

养殖水化学处理法指通过在养殖水体洒入一定量的无机或有机化学制剂,与水中污染物或悬浮物发生反应以改善养殖水质,这种方法在传统渔业养殖中使比较普遍。根据化学反应类型可分为中和法、沉淀法、络合法、氧化还原法[5]。其中臭氧处理法已较广泛应用于渔业养殖用水的处理,效果比较明显,但臭氧处理法大幅度增加养殖的成本,同时具有一定的副作用,也不能降低养殖水体营养物质TN、TP等的含量,因此在渔业养殖废水的深度处理中应用较少。

4水产养殖水体生物处理方法

4.1生物制剂法

微生态制剂具有较强的生物活性,加入到渔业养殖水体后能够快速增殖而变为优势种。利用有益微生物改善渔业养殖水体环境、维持渔业养殖水体生态平衡,是保持渔业养殖健康和稳定发展的重要措施[6]。光合细菌是目前应用最多的一种水质微生态调控剂,光合细菌可利用水中的NH4+-N、H2S等污染物质,使水中的有毒有害成分降低,溶解氧增加,遏制水体的富营养化,增强水体的透明度,使水质得到改善。在pH值合适的情况下,芽孢杆菌为主的复合菌对养殖水体有很好的生态调控作用,特别对水体中NH4+-N、NO2--N、NO3--N和COD的处理效率很好。随着投放时间不同,去除效果也不同,投入微生态制剂9d后,上述主要污染物含量显著降低,渔业养殖水体可以达到《地表水环境质量标准(GB3838-2002)》中Ⅱ类水域的水环境质量标准[7]。反硝化细菌对水体中的NO3--N、NO2--N处理效率也较好,研究表明,NO3--N、NO2--N为1mg/L的水体中,3d内NO3--N、NO22-N处理效率可以分别达到95.8%和90.2%[8]。

4.2活性污泥法

活性污泥法是渔业养殖水体生物处理的关键技术,其是以好氧微生物及其黏附的无机化合物和有机化合物所组成,具有吸附分解有机污染物,有效降低有机污染物浓度的能力。在经典的活性污泥处理法上发展而来成的AB法和SBR等处理工艺,具有更好的处理效果。Umbletal在渔业养殖污水排放沟中使用类似SBR法的操作方法进行好氧和厌氧处理,效果良好。Meskeetetal对经典的活性污泥法处理渔业养殖循环水进行研究,其结果表明NH4+-N浓度较高达不到回用水质的要求。Nugualetal使用SBR法工艺处理海水养殖废水的有机污染物并研究盐度对处理效果的影响,发现在处理盐度不是太高的海水养殖废水时,TN去除效果明显[9]。

4.3生物膜法

生物膜法由于具有产生活性污泥量少、运行维护便利、处理费用低廉的特点,在渔业养殖废水处理方面也有相对优势。生物膜法主要有生物转盘法工艺、生物接触氧化法工艺、生物流化床法工艺和生物滤池法工艺等,这些技术方法可根据微生物的多样化特征,选用于渔业养殖废水的封闭循环使用。由于生物膜上固定化的微生物密度较高、活性较强、反应速度更快,同经典的挂膜微生物处理工艺相比,对NH4+-N和难以降解的有机污染物具有明显的去除效果。在连续曝气的作用下,生物膜法对渔业养殖池塘中有毒有害的NO2--N和NH4+-N等有很高的处理效率,尤其对NH4+-N的去除效果比不曝气的好。连续曝气对水体中可溶性P的去除无明显效果,不曝气时明显降低水中可溶性P浓度[10]。

4.4生物滤池法

曝气生物滤池是具有集生物氧化、过滤和生物吸附等多种处理工艺于一体的水处理工艺,其通过维持较高的水力负荷和保留较高的微生物浓度以减少环境冲击,能促进好氧微生物生长,同时污泥产生量较少。曝气生物滤池主要应用于受污染渔业水源的预处理、难降解污染物处理和回用水的深度处理,且应用前景很好。在规模化养鱼池塘中使用的生物滤池设备主要有平流式、降流式和升流式[11]。生物滤池的运行最关键的部分在于挂膜,滤料表面如果不能形成有效的好氧生物膜,则无法对渔业养殖废水进行处理。挂膜从环境微生物学的来讲,即菌体接种,使微生物吸附在滤料表面上。微生物的载体为生物滤池中的填料,在不更换滤料的情况下,生物滤池可以连续使用。

4.5渔业养殖水体人工湿地法

人工湿地按水流方式的不同可将其划分为表面流、潜流和垂直流3个类型。陈家长等[12]对表面流人工湿地系统对混养区渔业养殖废水的处理效率进行了研究,结果表明,人工湿地对渔业养殖废水中的COD、NH4+-N、NO2--N、NO3--N、PO43--P、TN和TP的处理效率分别变化在32.07%~50.00%、57.25%~91.67%、38.46%~79.59%、43.75%~81.82%、47.50%~78.67%、31.37%~80.00%和39.53%~71.43%,平均处理效率分别为41.69%、76.91%、53.06%、60.88%、61.33%、54.22%和59.15%。

5水产养殖水体处理发展方向

随着世界范围内的水环境污染和水资源短缺的日趋严重,未来世界各国将采用封闭式循环养殖方法,渔业养殖废水的综合利用和无害化排放技术研究具有巨大的实用价值和广阔的应用前景[13]。我国渔业养殖废水主要来自的渔业养殖结束后的排水及渔业养殖过程中的季节性换水和补水,排换水时间相对比较集中,发达国家广泛采用的渔业循环养殖技术,运行费用非常昂贵,不适合我国的国情,在我国难以推广。我国池塘养殖具有规模小、分散,且种养混合区域面积广,主要养殖品种的经济效益相对较低等特点,采用人工湿地和自然湿地水质净化系统处理渔业养殖废水[14],符合现代和未来生态农业的要求,通过调整渔业养殖生态系统的结构,减少和避免养殖废弃物在水体中的积累,在使渔业养殖水质得到净化处理的同时使这些渔业养殖废弃物再循环利用。进一步研究高效可行的规模化渔业养殖废水集中处理系统和工艺,改善渔业养殖水体生态环境质量,保护水资源和减轻渔业养殖排水对环境的负面影响,是我国渔业养殖可持续发展的重要方向。

6参考文献

[1]王君英.水产养殖对生态环境污染的控制措施[J].北京水产,2004(4):4-6.

[2]TILLEYDR,BADRINARAYANANH,ROSATIR,etal.Constructedwetlandsasrecirculationfiltersinlarge-scaleshrimpaquaculture[J].AquaculturalEngineering,2002(26):81-109.

[3]晏小霞,唐文浩.光照处理系统对养殖废水净化效果的研究[J].农业环境科学学报,2006(25):201-205.

[4]谭洪新,周琪.泡沫分离―臭氧消毒装置的水处理效果研究析[J].渔业现代化,2008(1):15-19

[5]郭立新.循环水培高等陆生植物系统对水产养殖废水的净化研究[D].杭州:浙江大学,2004.

[6]邹健,方建光.微生态制剂在水产养殖环境生物修复中的应用[J].中国畜牧杂志,2007,10(43):60-61.

[7]孟睿,何连生,席北斗.芽孢杆菌与硝化细菌净化水产养殖废水的试验研究[J].环境科学与技术,2009(11):28-31.

[8]尹艳娥,沈新强,晁敏,等.反硝化技术对模拟养殖池塘修复的研究[J].农业环境科学学报,2009,28(8):1727-1732.

[9]方圣琼,胡雪峰,巫和昕.水产养殖废水处理技术及应用[J].环境污染治理技术与设备,2004,5(9):51-55.

[10]张寒冰,黄凤莲,周艳红,等.生物膜法处理养殖废水的研究[J].生态环境,2005,14(1):26-29.

[11]ROUSSEAUDPL,VANROLLEGHEMPA,PAUWND.ConstructedwetlandsinFlanders:aperformanceanalysis[J].EcolEng,2004,23(3):151-163.

[12]陈家长,何尧平,孟顺龙,等.表面流人工湿地在池塘养殖循环经济模式中的净化效能研究[J].农业环境科学学报,2007,26(5):198-190.

废水净化处理的方法篇6

1材料与方法

1.1试验区位本试验基地位于江苏省无锡市胡埭镇直湖港地区养殖塘(图1)。胡埭镇直湖港地区水产养殖面积700hm2,以养殖鱼类和中华绒鳌蟹为主,养殖面积约38.8hm2,鱼塘面积约83%,蟹塘面积约12%。水产养殖业产值占农业总产值的比重呈逐年上升趋势,是农业增效产、农民增收重要途径。以太湖地区污染物排放系数、入河系数为基础,根据污染源调查分析,直湖港地区CODMn(以高锰酸钾作化学氧化剂测定的化学需氧量)、铵态氮、总磷等水产养殖污染物入河量分别为6.0、0.9、0.6t/年。

1.2试验材料沉水植物主要为苦草(Vallisnerianatans)、轮叶黑藻(Hydrillaverticillata)、伊乐藻(Potamogetonmalaianus)。轮叶黑藻株高20~25cm,伊乐藻株高12~15cm,均来自上海海洋大学南汇水产养殖试验基地,苦草为草籽,来自无锡。蟹塘面积为0.67hm2,中华绒鳌蟹(Eriocheirsinensis)投放密度109.5kg/hm2,规格200只/kg。鱼塘面积为0.8hm2,主要为鲫鱼、草鱼、白鲢、花鲢混养(草鱼4180尾/hm2,鲫鱼3880尾/hm2,白鲢2090尾/hm2,花鲢895尾/hm2),饲料为四大家鱼配合饲料,每日投饵量为鱼体重的3%~4%;试验期间,补给水来自降雨,鱼苗塘面积0.13hm2,主要是草鱼与鲫鱼鱼苗。用化肥追肥,每隔3~5d施肥1次,每次用碳铵60~75kg/hm2,钙镁磷肥60~75kg/hm2;试验期间补给水来自降雨。养殖塘水源来自龙延河河道。

1.3试验方法原位生态修复:从2010年1月至2011年1月,首先冬歇期对蟹塘干塘清整,维持底泥约5cm,用生石灰2340~2985kg/hm2,全塘泼洒消毒10d,水温为5℃以上,选择伊乐藻为春季先锋种,轮叶黑藻为夏秋季主要植物。伊乐藻移栽时,按照2m×3m行间距扦插,扦插深度3~5cm,栽种密度为5~7g/L,随着伊乐藻生长,逐步加水,使水深为1.2~1.5m。2月下旬投放中华绒鳌蟹,3月投放苦草籽1kg/0.07hm2,6月开始分阶段移除过量伊乐藻,使苦草、轮叶黑藻主要发挥净化水质的功效。每月中旬10:00在蟹塘定点处的水面下50cm处采集水样2L进行检测,同时观察伊乐藻、苦草与轮叶黑藻生长状态,并及时补种或收割。原位生态修复和异位湿地处理相结合措施:从2010年11月下旬中华绒鳌蟹捕捞后,有序分批地抽取鱼塘与鱼苗塘的养殖废水至蟹塘,进行净化处理,其间鱼塘异位处理20d,然后鱼苗塘异位处理20d。12月17日开始,先用2d时间抽取鱼塘中(50%)的养殖废水(水位降低0.5m、水量减少4002m3)至异位湿地处理场所蟹塘中净化处理,将净化处理后的水排回鱼塘再利用。1月10日开始,用1d时间抽取鱼苗塘(50%)的养殖废水(水量2335m3),排至异位湿地处理场蟹塘中,净化处理后,将水排回至鱼苗塘再利用,削减养殖废水排放。鱼塘与鱼苗塘每批抽水完成后,每隔5d定点采集水样2L,共采样5次。

1.4检测指标及方法主要检测指标为pH值、溶解氧含量、高锰酸盐指数、硝态氮含量、亚硝态氮含量、铵态氮含量、总磷含量、总氮含量。检测方法:高锰酸钾指数,酸性高锰酸钾滴定法;亚态硝氮含量,重氮-偶氮比色法;硝态氮含量,紫外分光光度法;铵态氮含量,纳什试剂比色法;总磷(TP)含量,钼酸铵分光光度法;总氮(TN)含量,碱性过硫酸钾消解紫外分光光度法;活性磷(PO3-4-P),钼锑抗法;叶绿素a含量,单色分光光度法。

2结果与分析

2.1苦草、伊乐藻与轮叶黑藻组合群落对蟹塘的净化效果2010年1月至2011年1月对蟹塘(原位生态修复)、鱼塘、鱼苗塘和龙延河(水源)水质情况开展定时、定点监测(表1),试验区域水质氮、磷与有机物污染较严重。蟹塘水质优于其他相邻养殖塘。

2.1.1蟹塘N、P含量全年变化趋势水体中高浓度的氮、磷是水体富营养化的主要表现,控制水体富营养化的根本措施在于削减水体中氮、磷浓度[6]。试验结果表明,蟹塘TN、TP含量整年都较稳定,且较鱼塘、鱼苗塘和水源低(图2、图3)。这说明苦草、伊乐藻和轮叶黑藻能有效降低蟹塘水体的氮、磷含量,并能使其维持在一定范围内。蟹塘总磷含量全年保持稳定,在0.15mg/L上下波动,特别是6—9月,总磷含量明显低于鱼塘,达到国家地表水Ⅲ类标准(图2)。蟹塘总氮含量明显低于其他塘水质,并且全年变化范围不太大(图3)。蟹塘水体氮、磷含量全年保持稳定,为中华绒鳌蟹生长提供了良好的生境。

2.1.2蟹塘CODMn含量全年变化趋势利用植物削减富营养化水体有机污染也有大量研究[7-8],本研究利用苦草、伊乐藻与轮叶黑藻组合群落削减蟹塘养殖水体中的CODMn取得较好的效果。CODMn反映水体中有机污染程度的综合指标,由图4可知,蟹塘CODMn全年较稳定,平均为10mg/L,低于未种植苦草、伊乐藻和轮叶黑藻的鱼塘、鱼苗塘和水源。说明伊乐藻与轮叶黑藻对水体具有净化功能,能有效削减养殖水体中的有机污染物。

2.1.3蟹塘叶绿素a含量全年变化趋势叶绿素a含量是衡量水体藻类生物量的一个重要指标[9]。沉水植物具有克藻效应,能降低水体叶绿素a含量[10]。试验结果表明,蟹塘叶绿素a含量全年基本稳定,在夏季藻类滋生的高温季节,蟹塘叶绿素a含量平均为15mg/m3,仅约为其他水体含量的1/5(图5),并且透明度在晴好天气高达0.8m。而没有种植沉水植物的鱼塘及鱼苗塘,在相同水源情况下,叶绿素a含量在6—9月之间发生明显变化。说明苦草、伊乐藻和轮叶黑藻对控制蟹塘水体藻类生长发挥了很大作用,明显降低了水体叶绿素a含量,并且提高了水体透明度。

2.2异位湿地生态修复对水质净化效果

2.2.1异位湿地生态修复期间水质变化情况表2和表3为鱼塘和鱼苗塘养殖废水异位生态修复水质净化效果。由图6和图7可知,养殖水排放到蟹塘时各主要水质指标有较大波动,但每批经过异位处理10d后,主要检测指标几乎不再有波动,且浓度持续降低,说明该系统稳定性较高,净化能力较强。鱼塘和鱼苗塘分别经过20d异位修复后,鱼塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至7.55、0.19、0.20、1.16、11.63mg/m3。鱼苗塘养殖废水高锰酸盐指数、铵态氮、总磷、总氮和叶绿素a含量分别降至8.93、0.33、0.28、1.64、12.16mg/m3。水质指标低于生态修复前浓度,说明异位湿地生态修复起到较好的水质净化作用。#p#分页标题#e#

2.2.2异位湿地生态修复对氮、磷、高锰酸盐指数的削减率研究结果表明,水体中总氮、铵态氮、总磷和硝氮越高,伊乐藻与轮叶黑藻对其去除效果越明显[11-12]。从图8中可见,鱼塘异位生态修复期间,通过第1、2次采样检测发现,铵态氮、总氮、总磷去除效果明显,而第3、4次采样检测发现,各去除率下降较小,鱼塘废水经20d处理后,CODMn、铵态氮、总磷、总氮、叶绿素a去除率均已超过50%,其中,总氮含量由3.14mg/L下降到1.16mg/L,削减养殖废水中63%的总氮含量,基本满足了养殖用水的要求。此时,异位生态修复(蟹塘)还可继续作用于鱼苗塘养殖废水的净化。由图9中可见,在进行异位生态修复期间,鱼苗塘主要理化指标去除率前期变化没有处理鱼塘时那么明显。但是,前期去除率同样较高,且2次异位生态修复期间各指标去除率均稳定上升,说明该原异位生态修复系统稳定性较高。鱼苗塘2335m3养殖废水处理20d后,CODMn、铵态氮、总磷、总氮、叶绿素a去除率均超过45%,其中,铵态氮去除率高达54.79%。异位生态修复净化能力强,体现出该系统良好的污水净化性能与稳定性。总体上本序批式养殖废水生态净化循环处理系统,HRT为30~40d,处理6336m3养殖废水时,水力负荷为0.02~0.03m3/(m2•d)。水质连续处理能力较强,能将劣Ⅴ类的养殖废水净化至Ⅲ类标准,并保持相对稳定。

3讨论

沉水植物的恢复与重建能力已成为环境领域和水生态学研究的重点内容之一[13]。有研究证明,利用水生植物进行水污染控制具有投资、维护和运行费用低,管理简便,污水处理效果好,可改善和恢复生态环境,回收资源和能源以及收获经济植物等诸多优点,在污水处理和富营养化水体净化等方面均表现出良好的效果[14]。水体中氮、磷分为有机和无机2种形态[15]。氮元素在养殖塘内的循环是开放式的,水生生物、水生植物、池塘微生物等构成水态系统的食物网,各种生物通过同化作用使得氮元素在营养级中自下而上进行传递[16-19]。受污水体中的磷元素多易沉积于池塘底部,成为难以去除的营养物质。苦草在生长期能显著降低沉积物中各形态磷的含量,沉积物总磷、NaOH提取磷、HCl提取磷、无机磷和有机磷含量分别降低了65.71、39.06、11.65、52.86、11.28mg/kg[20]。伊乐藻和轮叶黑藻对养鱼污水中氮、磷等物质有着较好净化效果[21]。苦草、伊乐藻与轮叶黑藻种植密度为3g/L时,对水体中TP的去除率均超过68%[22]。本试验在蟹塘种植苦草、伊乐藻与轮叶黑藻,使其根部直接吸收底泥中的磷元素,从而去除水中磷元素。苦草生态适应性广,吸附污物及营养盐能力强,是减少水体污染、缓解水体富营养化程度的重要沉水植物。苦草繁殖速度快,再生能力强,收割后恢复时间短,被收割的苦草仅15d就可恢复生长到收割前水平,可从水体中带出大量营养盐。因此,苦草常被作为沉水植物恢复主要选用品种之一[23]。轮叶黑藻生存范围广,适应能力强,生长速度快、富集能力强,是净化养殖废水的理想植物,同时轮叶黑藻的根、茎、叶都是河蟹的适口性青饲料,能够提高河蟹的品质;另外,轮叶黑藻既可移植也可播种,栽种方便,并且枝茎被河蟹夹断后还能正常生根长成新株,不会对水质造成不良影响[24]。伊乐藻具有发芽早、长势快、耐低温等特点,所以伊乐藻与轮叶黑藻常在富营养化水体植被恢复工程中作为先锋物种[25]。本试验在蟹塘种植苦草、伊乐藻与轮叶黑藻,不仅可以给中华绒鳌蟹生长提供饲料与避难场所,同时在净化水质方面具有重要作用。

养殖水体藻类大量生长会导致水体溶氧量减少并降低水体透明度,造成鱼蟹大量死亡,所以控藻对水产养殖来说同样具有重要意义。不少研究表明,沉水植物是养殖塘水体中的初级生产者,与藻类属于竞争关系,而沉水植物在营养物质、光照等方面更具优势,从而能抑制藻类的生长,此外沉水植物会分泌化感物质抑制其生长[26-33],还能提高水体溶氧与透明度[34]。伊乐藻光合放氧使水体溶氧量和pH值升高,促进开放系统铵态氮的挥发[35]。轮叶黑藻对水中悬浮物的吸附量可达自身重量的2.59~5.52倍[11]。不同生物量伊乐藻对河水中其他藻类均具有较强抑制作用,并且随着生物量增加,其克藻效应更加明显[36]。苦草在水环境中能产生并释放具有抑藻活性的物质,以抑制多种浮游或附着藻类的生长[37]。本试验结果表明,通过在蟹塘种植苦草、伊乐藻和轮叶黑藻,蟹塘叶绿素a含量全年基本稳定,在夏季藻类滋生的高温季节,蟹塘叶绿素a含量平均为15mg/m3,仅为其他水体含量的约1/5,并且在晴好天气透明度高达0.8m。苦草、伊乐藻和轮叶黑藻的种植能明显控制蟹塘藻类的生长,为中华绒鳌蟹的生长提供较良好的生境。

水产养殖中,投入池塘饲料通常不能被鱼蟹完全摄食[38]。据调查,直湖港胡埭龙延村段每年鱼类养殖投入1200t颗粒饲料,投入养蟹塘颗粒料20t、鲜活冰冻鱼片42t,以及玉米、小麦粉等,残留饵料与养殖对象的排泄物会沉积到池塘底部,这加剧了池塘水体富营养化程度,造成水中浮游生物数量增加,鱼类病害泛滥。试验区鱼塘养殖水体氮、磷含量较高,如果直接排放会导致自然水体富营养化,对生态环境造成破坏。本研究根据中华绒鳌蟹养殖周期短、秋季收获、不同养殖对象养殖水资源需求与排放时间差异的规律特征,利用中华绒鳌蟹上市后蟹塘闲置期,建立陆域养殖废水排放异位湿地处理场所,将其他养殖污染较严重的污水通过一定水量有序分批式直接引入蟹塘净化处理,节约了净化处理设施与土地,这样既能有效转化池塘多余氮磷、填补蟹塘水草缺乏营养需求状况,又为来年养殖提供了饵料,同时通过净化处理后的水又可循环回用,有利于发展高密度养殖,提高水产品品质。鱼塘和鱼苗塘养殖废水经异位生态修复均得到较好的净化效果,鱼塘CODMn、铵态氮、总氮、总磷、叶绿素a去除率均超过50%。鱼苗塘CODMn、铵态氮、总氮、总磷、叶绿素a去除率均超过45%。异位生态修复时,鱼塘修复水力负荷较大,不过养殖废水得到较好的净化效果。经过20d鱼塘污水净化,蟹塘对鱼苗塘污水净化能力有所下降,但是其总氮、总磷去除率仍然高达46.84%、49.09%。说明该系统的稳定性和持续净化能力强。异位生态修复时,由于抽水和排水会导致水体曝气,从而会影响铵态氮等营养盐含量变化,造成结果的部分误差。但从结果来看,本系统通过综合调控与合理利用水资源,实现养殖过程中养殖废水的净化和零排放”,及水资源循环利用,提高水资源利用的综合效应,具有低碳高效、节约型循化水养殖的特点,对实际的生产应用有一定的推广价值。目前,限于试验条件对蟹塘、鱼苗塘和鱼塘养殖废水的原位、异位湿地生态修复处理研究分析,今后将进一步完善沉水植物筛选与群落配置,扩大试验规模,并筛选指示植物,提高预警,防止病害传播造成交叉污染等潜在危险,建立长期稳定的养殖废水序批式循环处理与再利用系统。#p#分页标题#e#

    【实用范文】栏目
  • 上一篇:化工废水的处理方法(6篇)
  • 下一篇:逻辑思维能力培养(6篇)
  • 相关文章

    推荐文章

    相关栏目