一、课前准备
学生在《秋日的私语》音乐声中开始了新内容的预习。
二、导入新课
(课件1)美国纽约时代广场海尔产品的宣传视频。(设计意图:通过视频材料引发学生的学习兴趣,使学生更快地进入学习状态。)
师:从视频中你看到了哪些信息?
生:海尔产品走向世界。
师:中国还有哪些产品走向世界了?
生1:玩具、电子产品。
生2:服装、自行车。
生3:莫言获奖了。
……
师(点评):回答得都不错,由这些信息能说明什么呢?
生(七嘴八舌):中国走向了世界……中国在不断走向世界。
师(点评):很好,今天就让我们开启一段走向世界的中国的学习旅程吧。
三、新课学习
(课件2)显示学习目标,学生大声读。
(课件3)进入温故知新板块。
师:请回顾我国走向世界的发展历程。是什么事件使中国被迫打开了国门?
生:鸦片战争。
师:你们知道党的十一届三中全会确立的伟大决策是什么吗?
生:改革开放的政策,这使我国进入了社会主义现代化建设的新时期。
师:回答得很好,谁还知道21世纪被西方媒体用“双赢”或“多赢”来评价中国的事件是什么?
生:加入世界贸易组织(WTO)。
(课件4)中国加入WTO的历程。(视频材料的展示,学生的学习兴趣更加浓了,表现欲望更加强烈了。)
师:请同学们结合课本第137页和所学的知识思考:我国加入WTO的意义。(要求:先独立思考,再小组交流;交流时组内成员认真听讲,成员在书本相应处做好标记。以小组合作的方式,凸显学生的主体地位。)
五分钟后,一个个小组都相继完成了讨论,高高举起了手。
生1:获得了平等制定规则以及平等地参与国际合作与竞争的权利。
生2:为我国加快自身发展创造了良好的国际环境;为国际社会提供了宽广的市场,有利于世界经济的繁荣和发展。
生3:有利于全面建成小康社会,加快现代化建设。
生4:有利于推动经济全球化的进程。
师(点评):刚才几位同学回答得很好,尤其是后两位同学的表现更好,你知道为什么吗?(进一步激发学生的表现欲,达到相应的效果。)
生:因为他们不局限于本课内容,还整合了原有的内容。
师(点评):很好,你听得很认真,评价得也不错。既然加入WTO是经济全球化的要求,那什么是经济全球化?
生:经济全球化是指各国的生产、贸易、投资、金融等经济行为,超越……(略)
师:刚才的回答很清晰,声音也很响亮。
(课件5)师:请看材料透视(略),请同学大声地读一读。
师:材料反映了当今世界经济发展的什么特点?
(学生零零落落地举起了手。)
生1:各国形成了“你中有我,我中有你”,既激烈竞争又加强合作的局面。
生2:各国、各地区之间的相互联系日益紧密,大家生活在一个“地球村”。
师:不错,能否用个词语来概括一下。
(有几个学生举手了,其中成绩不太好的男生小张怯生生地低低地举起了手。)
激励性的话语让平时不怎么愿意回答提问的学生也大胆了。
师:好,那就请小张来说说看。
生:经济全球化的趋势不断发展。
师(点评):回答得非常好,大家给他鼓鼓掌!(教室里响起了啪啪啪的鼓掌声。)
师(过渡):经济全球化是历史发展的趋势,为适应经济全球化的趋势,我国加入了WTO,加入后又采取了哪些重要的举措,取得了哪些成就?给了我们哪些有益的启示?
(课件6)要求:请结合课本第138页,小组合作完成,并提示各小组成员在书本相应处做好标记。
(一片讨论声,比先前的讨论声更加热烈了。)
教师激励性的评价非常及时,进一步调动了学生的积极性。
师:我国加入了WTO,加入后又采取了哪些重要的举措?
生1:实施互利共赢的开放战略。
生2:调整与贸易有关的法律制度和制度运行机制。
……
师:几个臭皮匠顶个诸葛亮,呵呵,不错。(教师适时地调节课堂气氛有利于学生拓展思维提高能力。)
(课件7)成果展示:资料卡片(略)。
师:刚才大屏幕上显示的两则材料说明了什么?
生1:说明我国现代化建设取得了巨大成就。
生2:不仅是这些,还说明人民的生活水平有了显著的提高。
师:刚才这位同学回答得很好。考虑得很周全,希望在座的各位同学向他学习。我们一起为他鼓鼓掌。
师:“入世”取得了巨大的成就,给了我们哪些有益的启示?
生1:要继续推行对外开放的政策。
生2:要树立互利共赢的理念。
……
师(点拨):同学们有没有发现这仅仅是对我国的启示,有没有其他角度呢?
(同学们窃窃私语,部分学生举起了手。)
生4:努力学习,去适应时代要求。
生5:培养自主创新能力。
师(归纳):如果遇到这样的问题,回答时可以从不同的角度去说。(学生们连连点头。)
师(过渡):通过学习,我们一起进入“练一练”这个环节。(设计意图:通过新内容的讨论学习,采用讲练结合的方法,进一步巩固所学内容。)
(课件8)材料展示(略)。
师:材料说明了什么?
(小组讨论后,学生们举起手,意味着他们已经完成任务。)
生1:我中有你,你中有我。
生2:国与国之间的联系变得越来越密切。
生3:经济全球化的趋势越来越明显。
师:回答得很好,特别是刚才的这位同学,学会从现象中揭示出实质,这是必须要掌握的方法。
师(过渡):在经济全球化的今天,置身于世界之外的国家是难以得到发展的,我国紧紧抓住了历史机遇,继续推行改革开放,改革开放使中国不断走向世界。我国应怎样应对这种趋势?
生1:坚持对外开放的基本国策,加强同世界各国的经济技术交流合作。
生2:顺应经济全球化的发展潮流,积极参与国际竞争。
生3:还需要增强自主创新能力。
师:回答得越来越好,继续加油哦!
(课件9)北京奥运会的开幕式盛况的视频(设计意图:通过生动的视频,激发学生的民族自豪感、民族的责任感和使命感。)
师:这个是什么事件?
生:2008年北京奥运会的开幕式。
师:对了,此时你们的心情如何?
生1:激动、自豪。
生2:骄傲、振奋人心、兴奋……
(课件10)上海世博会的场馆照片。
师:谁能告诉我这个是什么事件?
生1:这个我熟悉,我们全家去过,这个是世博会的展览馆。
生2:2010年在上海举行的世博会。
师:两位同学回答得很好。
师(过渡):随着经济全球化的发展,各国间的交流也进一步加深。你还能举出哪些类似的事例吗?
生1:中国支援了其他国家。
生2:中国积极应对金融危机。
生3:2001年在上海举行了亚太经合组织会议。
师:很好,下面再看看大屏幕。
(课件11)我国多次承办重要国际会议(略)。
(课件12)中国派和平方舟去菲律宾救援。
师:尽管我国与菲律宾在南海问题上有争端,但我国依然发扬了人道主义精神。
(课件13)中国应对金融危机。
(课件14)中国向巴基斯坦提供援助的视频。(继续通过直观的材料呈现加深对学习内容的理解。)
师:刚才呈现的这些材料说明了什么?
生1:我国综合国力的增强、国际地位的提高。
生2:我国在国际关系和国际事务中发挥着越来越重要的作用。
生3:中国的发展离不开世界,世界的繁荣也离不开中国。
师:今天同学们的表现真棒!希望以后的每堂课都能这样!
四、课堂小结,教师归纳、组内小结交流(略)
【教材分析】三角函数是描述周期运动现象的重要的数学模型,有非常广泛的用途.紧紧扣住三角函数定义这个宝贵的源泉,自然导出三角函数线、定义域、符号判断、值域、同角三角函数关系、诱导公式、图像和性质等.
三角函数定义的基础性和广泛性,决定了本节课是三角函数这一章中重要的一课.本节课将是三角函数定义的运用的起始课,也是任意角的三角函数的第二课时.
【学情分析】受教班级是个理科班,学生比较活跃,学生总体平均水平在中考录取线上30分左右,基础薄弱,整体属于中下等水平.学生已经学过“任意角”一课时,“弧度制”一课时,“任意角的三角函数的定义”一课时,对三角函数这一内容初窥门径.在另一位老师的带领下,任意角的三角函数(第一课时)已经借助单位圆等知识,生成任意角的三角函数的定义,并进行了简单的求值.
【教学目标】运用任意角的正弦、余弦、正切的定义,结合单位圆,掌握任意角三角函数的定义的两种简单运用,学习数形结合、类比归纳、化归与转化思想等数学思想方法.
1.初步体会从任意角三角函数定义的角度,借助单位圆,理解终边相同的角的同一三角函数值相等,并会用其解决简单问题.
2.自主运用:从任意角三角函数定义的角度,借助单位圆,理解并掌握各象限角的正弦、余弦和正切函数的符号.
【学习重点】两个运用:任意角的三角函数的简单运用形成过程中,图形运用――单位圆,代数式运用――任意角三角函数定义.
【学习难点】接受函数思想,在数学结合、归纳类比数学思维方法的有效使用下,推出各象限角的正弦、余弦和正切函数的符号和终边相同的角的三角函数值相等.
【学习过程】
揭示课题:上节课中,新老师带领我们一起学习了任意角的三角函数的定义,并且运用定义导出了任意角三角函数的定义域.本节课,我们将要继续运用任意角的三角函数的定义来解决一些数学问题.
复习引入、回想再认
请同学们回忆并回答以下三个问题:
(1)任意角的三角函数(正弦、余弦、正切)如何定义的呢?
(2)此定义中要素有哪些?
(3)该比例式与终边在单位圆中的位置有关吗?
同学们回答得简明扼要,说明上节课学习得颇有心得.下面请同学们思考并讨论以下三个问题:
(1)一条终边在单位圆中究竟有哪几种位置关系?(课件显示8种图形)
(2)一条终边可以表示多少个角?
(3)如果把刚才复习的两个知识点,也就是终边和任意角三角函数串联起来,可能得到什么样的命题呢?大家可以自由讨论,试试看.
生(众):窃窃私语,不确定中……
师:其实这是两个旧知识:终边相同的角和三角函数的定义相结合,所产生了的2个新问题,即:终边相同的角的同一三角函数值相等和各象限角的正弦、余弦和正切函数的符号,这就是本节课的学习任务.
探究新知
探究(一):终边相同的角的同一三角函数值相等吗?
1.小组讨论
请同学们前后桌四人为单位互相讨论,拟定解决此问题的计划,然后把自己的想法,记录并清楚地表达出来.开始!
2.全班反馈
生:直接画图,看图,看坐标.
师:领会到了单位圆和任意角的三角函数定义在这里将发挥作用.但表达得语言够简约的,能意会的同学举手.(寥寥几个而已)
师:有没有更具体点的操作.
生:正弦、余弦、正切函数各个击破.
师:好的.这是个大概方针.同意的同学举手.(大部分举手)有没有补充办法?
生:文字表达,换成数学符号表达.
师:基本可以解决问题了.
3.汇总
(1)理解问题
师:终边相同的角,即:α与α+2kπ终边相同.那么,此问题转化为sinα与sin(α+2kπ)是否相等?
生(众):cosα与cos(α+2kπ)是否相等?tanα与tan(α+2kπ)是否相等?
(2)分解问题
师:首先研究:sinα与sin(α+2kπ)是否相等?想一想,三角函数的定义.
生:在单位圆中,终边交单位圆的交点坐标P(x,y),则sinα=y.
师:那么,我们的问题转化为求什么?
生:角α与角α+2kπ的坐标是否相等,单位圆中的坐标.
师:补充得很完整了.角α+2kπ与单位圆的交点坐标是?
生(众):与角α的交在同一点P(x,y).
师:也就是说,sin(α+2kπ)=y.
结论:终边相同的角的正弦值相等.即:sin(α+2kπ)=sinα.
师:回忆本次成功推理的过程.
生(众):终边相同坐标相同同一函数值相同
(3)类比
师:请同学们思考cosα与cos(α+2kπ)是否相等?tanα与tan(α+2kπ)是否相等?
生:角α与角α+2kπ与单位圆的交点坐标都是P(x,y),所以cos(α+2kπ)=cosα=x.
生:tan(α+2kπ)=tanα=yx.
(4)归纳
通过以上分析,终边相同的角的同一三角函数的值相等.由此得到一组公式,称作公式一(公式一的符号表达):
sin(α+2kπ)=sinα,cos(α+2kπ)=cosα,
tan(α+2kπ)=tanα(k∈Z).
下面请同学们写出公式一的角度制写法,熟悉公式的两种写法.
(5)公式一的固化练习
通过大家的积极思考,共同努力得到了公式一.我们来做几道练习题,熟悉运用过程..
例1求下列三角函数的值:①cos9π4②tan(-11π6)
师(分析、板书):①cos9π4=cos(2π+π4)=cosπ4=22.
②tan(-11π6)=tan(-2π+π6)=tanπ6=33.
例2化简下列各式:
①sin(-1395°)cos1110°+cos(-1020°)sin750°;
②sin(-11π6)+cos12π5・tan4π.
师:请两位同学板演,其他同学练习本上完成.师生共同批改板演.教师对板演情况给予评价.
(6)小结
师:这两道题目分别是角度制和弧度制的写法,大家通过练习对公式一有了更熟悉的了解.注意观察以上几道题目,想一想,公式一的作用是什么?
生(讨论):可以把求任意角的三角函数值,转化为求0到2π(或0°到360°)角的三角函数值.简而言之:大角化小角.
师:同学们总结得很好.看来同学们学习得心应手.下面这个任务我就放心地完全交给大家执行了.
探究(二):任意角的三角函数在各象限的符号
α第一象限第二象限第三象限第四象限sinαcosαtanα1.执行任务
师:请同学们以同桌两人为单位,讨论并完成以上表格.教室里热火朝天的讨论中……
2.反馈汇总
师:请同学描述一下你是如何得到结论的?
生:由sinα=y,所以一、二象限是正的,三、四象限是负的.
生:角α与单位圆交点坐标(x,y),由任意角三角函数定义得,cosα=x,所以第一、四象限是正的,第二、三象限是负的.
生:单位圆中,tanα=yx,第一象限x正y正tanα正,第二象限x负y正tanα负,第三象限x负y负tanα,正第四象限x正y负tanα负.
生:还可以从象限看.第一象限全是正的,第二象限只有正弦正其他负,第三象限正切正其他负,第四象限余弦正其他负.
师:同学们总结得很好.我们一起从两方面总结:根据定义,想象坐标位置.
(1)单独看:sinα上正下负,cosα左负右正,tanα奇正偶负.
(2)联合看:一全正,二正弦,三正切,四余弦.
3.综合练习,发展思维能力
师:请同学们独立完成,汇报一下你的成果,并说明理由
例3判断符号:
①sin340°・cos265°;②sin4・tan(-23π4).
课堂整理
我们完成了预期的目标,请同学们现在放轻松,回忆并感受一下,本节课你都学到了什么?教师提问检查并强调:
1.你是如何记忆公式一?其作用是什么?(根据定义,……将角转化到0°到360°)
2.你是如何记忆正弦、余弦和正切函数值的符号?(根据定义,想象坐标位置……)
布置作业:
1.书面作业:《45分钟课时作业》第3课
2.认真阅读教材第17页《三角学与天文学》一文,了解三角学的起源与发展,认识几位数学家,了解他们的生平和对数学做出的贡献.特别学习他们对科学的执着精神和坚忍不拔的顽强毅力.
【教学反思】
课堂是发现自我,认识自我,完善自我的最佳途径.
本节课的主旋律就是指导学生动手实践、自主探索,寻找真相.基于学情和理念指引,通过本课时的教学和老师们的点评,以下问题值得我的关注和完善:(1)面对真实的认知起点,营造和谐轻松的上课氛围;由于连上两节课,因此本节课伊始,便指出本节课将承接上节课定义的运用,仍是一节定义的运用课.在简单有效的复习后,明确指出本节课的两个学习目标,目的就是让学生做到心中有数,以免引起学生心理上的疲惫感.紧接着,让学生自己思考,两个旧知识产生的碰撞,引入了本节课的主题,并为探索学习阶段的解决问题在方法上指明方向.在探究新知环节,我极力引导学生制定计划,从小处着手切入点,并且用语言表达出思维状况.熟练运用文字语言、符号语言、图形语言三者间的转化,方便解题.培养良好的数学解题习惯,明明白白读题,清清楚楚表达.多次采用小组讨论的模式,大家一起想办法解决问题,消除学生面对新问题时的心理上的紧张感和无助感,帮助学生向独立自主过渡.
(2)让学生成为课堂的主体;浙江省深化新课程改革要求“以学生为中心,以学生的活动为主”的教学理念,重视和体现学生的主体作用,同时又不能忽视教师的主导作用,通过学生的积极思考、参与讨论并解决问题,使学生的学习具有主动性和持久性,更好的培养学生自主创新能力.
自主探究是新课程倡导的学生学习数学的重要方法之一.考虑到受教班级学生的实际水平,为防止探究活动流于形式,本节课是由学生半自主学习过渡到完全以学生为主体的学习,体现了教学活动的双主体性,是学生主动参与知识的形成过程.首先在教师的带领下对探究一,分析问题,解决问题.在完成探究二时,才完全交给学生操作、观察、思考、得到结论.然后老师帮助学生将过程和结论表述精致,这个过程完全以学生为主体使得学生自动将使用单位圆和任意角的三角函数的定义,提到使用的前台,充分体会到了单位圆的优越性和任意角三角函数的作用.也借此机会,让学生体会到数形结合的直观性和转化与化归这一数学思想方法的抽丝剥茧、由繁化简的作用.
(3)学会等待,善用等待.
回顾以往教学,我们常常遇到这样的现象:当老师提出一个问题后不到三秒钟,就要学生回答,若两三个学生都无法回答,老师就会自问自答.考试和作业中,讲过好几遍的题目,学生还是做错.
纵观历史长河,无数仁人志士正是因为学会了等待,才有其千秋功业.勾践忍辱负重,卧薪尝胆,学会了等待,才会灭吴;诸葛亮学会了等待,才会有“三顾频繁天下计,两朝开济老臣心”;俞伯牙在几十年学艺中学会等待知音,于是有了钟子期的出现,有了《高山流水》的绝唱.