起点作文网

半导体光电技术(收集3篇)

时间: 2024-06-30 栏目:办公范文

半导体光电技术范文篇1

摘要本文重点对半导体硅材料,gaas和inp单晶材料,半导体超晶格、量子阱材料,一维量子线、零维量子点半导体微结构材料,宽带隙半导体材料,光子晶体材料,量子比特构建与材料等目前达到的水平和器件应用概况及其发展趋势作了概述。最后,提出了发展我国半导体材料的建议。

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic’s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅ic’s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smartcut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。

2.2gaas和inp单晶材料

gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb)方法生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

gaas和inp单晶的发展趋势是:(1).增大晶体直径,目前4英寸的si-gaas已用于生产,预计本世纪初的头几年直径为6英寸的si-gaas也将投入工业应用。(2).提高材料的电学和光学微区均匀性。(3).降低单晶的缺陷密度,特别是位错。(4).gaas和inp单晶的vgf生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(mbe,mocvd)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)ⅲ-v族超晶格、量子阱材料。gaaias/gaas,gainas/gaas,aigainp/gaas;galnas/inp,alinas/inp,ingaasp/inp等gaas、inp基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(hemt),赝配高电子迁移率晶体管(p-hemt)器件最好水平已达fmax=600ghz,输出功率58mw,功率增益6.4db;双异质结双极晶体管(hbt)的最高频率fmax也已高达500ghz,hemt逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(dfb)激光器和电吸收(ea)调制器单片集成inp基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmingaas带间量子级联激光器,输出功率达5w以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服pn结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年ingaas/inaias/inp量子级联激光器(qcls)发明以来,bell实验室等的科学家,在过去的7年多的时间里,qcls在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的qcls的工作温度高达312k,连续输出功率3mw。量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120k5μm和250k8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,ⅲ-v族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的mbe和m0cvd设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的mocvd中心,法国的picogigambe基地,美国的qed公司,motorola公司,日本的富士通,ntt,索尼等都有这种外延材料出售。生产型mbe和mocvd设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米si/sio2),硅基sigec体系的si1-ycy/si1-xgex低维结构,ge/si量子点和量子点超晶格材料,si/sic量子点材料,gan/bp/si以及gan/si材料。最近,在gan/si上成功地研制出led发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,gesi/si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。si/gesimodfet和mosfet的最高截止频率已达200ghz,hbt最高振荡频率为160ghz,噪音在10ghz下为0.9db,其性能可与gaas器件相媲美。

尽管gaas/si和inp/si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的gaas外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如gaalas/gaas,in(ga)as/gaas,ingaas/inalas/gaas,ingaas/inp,in(ga)as/inalas/inp,ingaasp/inalas/inp以及gesi/si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所mbe小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的mbe小组等研制成功的in(ga)as/gaas高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4w。特别应当指出的是我国上述的mbe小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1w时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本ntt就研制成功沟道长度为30nm纳米单电子晶体管,并在150k观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年yauo等人采用0.25微米工艺技术实现了128mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的mbe小组,在继利用mbe技术和sk生长模式,成功地制备了高空间有序的inas/inai(ga)as/inp的量子线和量子线超晶格结构的基础上,对inas/inalas量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如zno、sno2、in2o3和ga2o3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的larssamuelson教授领导的小组,分别在sio2/si和inas/inp半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,iii族氮化物,碳化硅,立方氮化硼以及氧化物(zno等)及固溶体等,特别是sic、gan和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,iii族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(led)和紫、蓝、绿光激光器(ld)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年gan材料的p型掺杂突破,gan基材料成为蓝绿光发光材料的研究热点。目前,gan基蓝绿光发光二极管己商品化,gan基ld也有商品出售,最大输出功率为0.5w。在微电子器件研制方面,gan基fet的最高工作频率(fmax)已达140ghz,ft=67ghz,跨导为260ms/mm;hemt器件也相继问世,发展很快。此外,256×256gan基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸gan单晶材料,这将有力的推动蓝光激光器和gan基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带inasn,ingaasn,ganp和ganasp材料的研制也受到了重视,这是因为它们在长波长光通信用高t0光源和太阳能电池等方面显示了重要应用前景。

以cree公司为代表的体sic单晶的研制已取得突破性进展,2英寸的4h和6hsic单晶与外延片,以及3英寸的4hsic单晶己有商品出售;以sic为gan基材料衬低的蓝绿光led业已上市,并参于与以蓝宝石为衬低的gan基发光器件的竟争。其他sic相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

ii-vi族兰绿光材料研制在徘徊了近30年后,于1990年美国3m公司成功地解决了ii-vi族的p型掺杂难点而得到迅速发展。1991年3m公司利用mbe技术率先宣布了电注入(zn,cd)se/znse兰光激光器在77k(495nm)脉冲输出功率100mw的消息,开始了ii-vi族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前znse基ii-vi族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之gan基材料的迅速发展和应用,使ii-vi族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如gan/蓝宝石(sapphire),sic/si和gan/si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除sic单晶衬低材料,gan基蓝光led材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如gan衬底,zno单晶簿膜制备,p型掺杂和欧姆电极接触,单晶金刚石薄膜生长与n型掺杂,ii-vi族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(fib)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如ag/mno多层膜,再用fib注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒fe2o3,发光纳米颗粒cds和介电纳米颗粒tio2)和共轭高分子的自组装方法,可形成适用于可见光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥rivest,shamir和adlman(rsa)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计算的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mk的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29si)的硅单晶;减小sio2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料

硅材料作为微电子技术的主导地位至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2gaas及其有关化合物半导体单晶

材料发展建议

gaas、inp等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的si-gaas和3-5吨/年掺杂gaas、inp单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸gaas生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体

微结构材料的建议

(1)超晶格、量子阱材料

从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强mbe和mocvd两个基地的建设,引进必要的适合批量生产的工业型mbe和mocvd设备并着重致力于gaalas/gaas,ingaalp/ingap,gan基蓝绿光材料,ingaas/inp和ingaasp/inp等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸gaas生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸mbe和mocvd微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如sic,gan基微电子材料和单晶金刚石薄膜以及zno等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

半导体光电技术范文篇2

关键词:半导体材料发展趋势

中图分类号:O47文献标识码:A文章编号:

半导体信息功能材料和器件是信息科学技术发展的物质基础和先导。半导体材料是最重要最有影响的功能材料之一,它在微电子领域具有独占的地位,同时又是光电子领域的主要材料。半导体技术的迅速发展,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

一、几种主流的半导体材料简介

(一)半导体硅材料

硅是当前微电子技术的基础材料,预计到本世纪中叶都不会改变。从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离和SIMOX材料等也发展很快。理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

(二)半导体超晶格、量子阱材料

以GaAs和InP为基的晶格匹配和应变补偿的超晶格、量子阱材料已发展得相当成熟,并成功地用来制造超高速、超高频微电子器件和单片集成电路。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英、法、美、日等尖端科技公司等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(三)光子晶体半导体材料及其发展趋势

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。有科学家提出了全息光栅光刻的方法来制造三维光子晶体,并取得了进展。

半导体光电技术范文篇3

关键词:发光二极管;半导体照明;技术水平;发展方向

中图分类号:TN312+.8文献标识码:B

DevelopmentandPerspectiveofSemiconductorLightingIndustry

HUAi-hua

(XiamenHualianElectronicsCo.,Ltd.,XiamenFujian361006,China)

Abstract:Underthespecificationofscopeofsemiconductorlightingindustry,thispaperanalysesthecurrentstatusandtechnicallevelofsemiconductorlightingindustryathomeandabroad,withthesummaryofthecharactersandtrendofthisindustry.Followedbytheindicationofexistingproblemsinthisindustryathome,theauthorhasmadecertainresearchandexplicationonitsfurtherdevelopment.

Keywords:LED(lightemittingdiode);semiconductorlighting;technologylevel;developmenttrend

引言

随着半导体照明光源在城市景观、商业大屏幕、交通信号灯、手机及PDA背光源等特殊照明领域的应用,以其饱满光色、节能、抗震、耐潮、长寿命等优势,半导体光源已成为全球最热门、最受瞩目的光源,特别是LED的发光效率正在大幅提高,半导体照明被认为是21世纪最有可能进入普通照明领域的一种新型固态冷光源和最具发展前景的高技术领域之一。中国拥有巨大的照明工业和照明市场,随着国家对LED发展的高度重视和我国LED产业的快速发展,半导体照明应用在我国城市夜景照明领域已开始普及,几乎全国所有大城市的夜景照明都广泛使用LED,特别是我国有关部门已明确提出将以2008年北京奥运会和2010年上海世博会为契机,推动半导体在城市景观照明的应用。据统计,2008年北京奥运会使用LED产品总值接近人民币五亿元,包括景观照明、交通信息显示、室内外全彩显示屏、应急照明灯、开闭幕式表演等,LED非凡的艺术表现效果为本届奥运会开幕式的成功奠定了基础,使半导体照明首次大规模应用于奥运会这样的国际盛会。

新兴半导体照明产业发展迅速,绿色节能的照明光源革命已成为不争的事实,半导体照明应用范围不断扩大,也将进一步推动我国的城市照明领域更广泛地使用半导体LED照明。因此,国内许多省市将发展半导体照明产业作为当地的重点发展产业,目前国内7个半导体照明产业基地的发展,充分证明了中国半导体照明产业面临新的机遇和挑战。制定发展战略,抢抓重大机遇,迎接严峻挑战,快速推进我国半导体照明产业跨越式发展是十分紧迫的任务。

1半导体照明产业范畴

半导体照明产业指的是以半导体发光二极管为光源的照明产品生产制造业,主要包含整理照明、景观装饰照明、大屏幕显示、背光显示、交通信号显示、汽车灯、道路照明等照明产品。随着半导体照明技术的发展,其应用越来越广泛,产业具有巨大的应用市场和发展空间,将产生不可估量的社会和经济效益。

信号指示:电子仪器、设备、家用电器的光信号显示和指示。

大屏幕显示:主要用于金融、证券、交通、机场、邮电等领域的信息、广告、图示、记分牌等显示屏。近年全彩色LED户外显示屏已代替传统的灯箱、霓红灯、磁翻板等成为主流,尤其是在全球各大型体育场馆几乎已成为标准配备,尺寸从几十英寸至几千英寸。

背光显示:LED作为背光源已普遍应用于手机、电脑、手持掌上电子产品及汽车、飞机仪表盘等,3.5in以下的背光源主要用于手机、相机、MP3、MP4等便携设备,5~7in背光源主要用于数码相框、电子纸、车载显示器,大尺寸LCD屏的背光主要是用于笔记本电脑和电视机等。

光色照明:主要有室外景观照明和室内装饰照明,包括建筑装饰、室内装饰、景点装饰等,主要用于建筑、街道、商业中心、名胜古迹、桥梁、社区、庭院、草坪、家居、休闲娱乐场所的装饰照明,以及集装饰与广告为一体的商业照明,如护栏灯、投射灯、LED灯带、数码灯管、地埋灯、草坪灯、水底灯及壁灯、吊灯、射灯、平面发光板、格栅灯、变幻灯等。

交通信号显示:主要用于城市交通、高速公路、铁路、机场、航海和江河航运用的信号灯。

汽车灯:主要用于车内的仪表盘、空调、音响等指示灯及车厢内部阅读灯,车外的转向灯、刹车灯、尾灯、侧灯等。

道路照明:已广泛用于路灯、庭院灯、隧道灯等。

功能性照明:主要有便携式照明(手电筒、头灯)、低照度照明(廊灯、门牌灯、应急灯、安全指示灯)、阅读照明(飞机、火车的阅读灯)、显微镜灯、照相机闪光灯、台灯、矿灯、医用手术灯等。

整理照明:半导体照明的顶级目标是进入整理照明领域,代替白炽灯、日光灯,甚至替代节能灯,这需要超高亮度LED超长寿命、极低功耗的显著优势,同时成本考量也是一个关键。

2国内外半导体照明产业发展现状

2.1国外半导体照明产业发展概况

从全球来看,半导体照明产业已形成以美国、亚洲、欧洲三大区域为主导的三足鼎立的产业分布与竞争格局。随着市场的快速发展,美国、日本、欧洲各主要厂商纷纷扩产,加快抢占市场份额。根据目前全球LED产业发展情况,预测LED照明将使全球照明用电减少一半,2007年起,澳大利亚、加拿大、美国、欧盟、日本及中国台湾等国家和地区已陆续宣布将逐步淘汰白炽灯,发展LED照明成为全球产业的焦点。

2.1.1国外半导体照明产业概况

(1)主要LED企业

国外(境外)掌握核心技术及产业规模较大的主要企业,如表1所示。

这些企业掌握该行业的核心技术,其外延、芯片的产量占全世界的70%以上,其高性能芯片产量占全世界的90%以上。

(2)LED封装产值

全球LED封装器件2008年的产值约100亿美元,近几年的增长率在10~20%。目前,该产业规模只是很小份额,其所构成的应用产品一般增值3~5倍,与其它产业相比还是很少的,但该产业具有很大的发展潜力。

(3)主要技术水平

Nichia是世界上最早的半导体白光生产厂商,技术水平始终处于国际领先地位。在蓝光芯片的技术路线上,Nichia采用图形化蓝宝石衬底结合ITO透明导电层芯片工艺,产品性能表现优越。2009年1月底,宣布LED在20mA电流驱动下,光效达249lm/W,功率LED封装白光在350mA电流驱动下,光效达145lm/W。

Cree和Osram是目前世界上主要采用SiC衬底材料制造GaN基蓝、绿光LED用外延片和芯片的专业公司,两家的技术路径、产品规格和特点基本相同。据2008年的报道显示,Cree公司已经公布其白光LED的实验室水平已经达到161lm/W的光通量,此光通量为业界研发成果汇报中的最高水平,其102lm/W的产品也将很快批量生产;Osram宣布了最新的研发成果,大功率LED在350mA电流驱动下,光输出达到了155lm,效率高达136lm/W,色温是5,000k。这个记录远远超过目前市场上处于领先地位的CreeQ5LED,Q5的光效是107lm@350mA。

LumiLEDs公司的氮化镓LED芯片采用蓝宝石作为外延衬底材料,其最新的薄膜倒装芯片(thin-filmflip-chip,TFFC)技术,结合利用了垂直薄膜结构和倒装芯片结构的优点,集成芯片和封装工艺,最大限度降低热阻,提高取光效率。2007年,LumiLEDs研发水平已经突破115lm/W。2008年的报道:在驱动电流为350mA的情况下,发光效率为140lm/W,比2007年1月份(115lm/W)提高了22%。

SemiLEDs(旭明)是继Osram和Cree之后采用激光剥离蓝宝石衬底技术商品化生产薄膜GaN垂直结构LED的厂商。他们推出金属基板垂直电流激发式发光二极管(metalverticalphotonlightemittingdiodes,MvpLED),其芯片封装成白光成品的发光效率目前可以达到100lm/W。

2.1.2国外半导体照明产业发展特点及趋势

(1)制定发展规划

世界主要发达国家高度重视半导体照明产业的发展,本世纪初,几个主要发达国家和中国台湾均制定了部级的半导体照明发展规划,如日本的“二十一世纪照明研究发展规划”,美国的“国家半导体照明研究计划”,欧共体的“彩虹计划”,韩国的“GaN半导体研究计划”,中国台湾的“次世纪照明光源开发计划”,英国、德国也相继制定了具体发展计划,主要内容是投入巨额资金联合国内主要力量开展半导体照明的研发,制定各阶段发展的技术指标,并推动产业化。美国近期制定了LED新指南,2015年内量子效率达90%,荧光粉激发效率达90%,并对热沉、光谱系统、可靠性进行研究;2025年LED光源达到仿太阳光谱,总发光效率达50%。

(2)垄断核心技术

国外有关LED及半导体照明的专利有一万多项,但其核心技术被日本日亚公司(Nichia)、美国Cree公司和LumiLEDs公司、德国Osram公司四家企业,以及表1中所提到的其他公司所掌握,这些公司几乎垄断了该产业的核心技术。

(3)技术发展迅速

近五年,LED的主要技术指标――发光效率平均每年以30%的速度发展,从2004年的20~30lm/W发展到目前的100~120lm/W。从技术层面,研究采用新衬底材料生长GaN外延、非极性或半极性外延,有新结构的芯片、衬底转移、光子晶体等新技术应用。

(4)重视标准制定

有关半导体照明标准除了国际电工委员会IEC和国际照明委员会CIE制定外,许多国家标准化组织和产业联盟也在积极制定之中,如美国国家标准组织、日本照明组织系统、韩国、中国台湾以及北美固态照明系统及科技联盟(ASSISI)等,这极大推动了半导体照明产业的发展。

(5)开拓应用产品

国际上LED产业目前主要应用产品是背光源、汽车用灯及各类信息显示,这三类LED应用占70%以上,照明应用只占5%左右。近期,在功能性照明如景观照明及道路照明有一定发展。

(6)照明集团投入

据全球照明市场研究数据,世界照明市场2008年为1,077亿美元,其中LED照明光源占2%,为18亿美元;2010年为1,204亿美元,其中LED照明光源占16%,为100亿美元。现阶段,世界三大照明集团均投入巨资发展半导体照明技术和产业,并分别具有世界一流的LED企业,即Philips照明公司、LumiLEDsLighting公司,Osram公司旗下的Osram光电公司、GE公司旗下的Geleore光电公司,这将加速推进LED产业进入普通照明领域的进程。

(7)新三角产业基地

由于中国大陆、中国台湾和韩国在半导体照明产业上近几年发展非常迅速,目前这些地区虽然在技术上还达不到美国、日本和德国的水平,但在产业化方面已达到相当高的水平。据有关统计,这三个国家和地区的GaN基蓝、绿光芯片产量达到世界总量的50~60%,四元系InGaAlP红、橙、黄光芯片产量已超过世界总量的80%以上,在器件封装和LED应用产品方面的总量更大。在全球LED产业中,该地区的影响很大。

2.2国内半导体照明产业发展概况

中国LED产业起步于20世纪70年代,经过30多年的发展,中国LED产业已初步形成了包括LED外延片生产、LED芯片制备、LED器件封装以及LED产品应用在内的较为完整的产业链。在“国家半导体照明工程”的推动下,形成了上海、大连、南昌、厦门、深圳、扬州和石家庄7个国家半导体照明工程产业化基地,长三角、珠三角、闽三角以及北方地区则成为中国LED产业发展的聚集地。目前,中国半导体照明产业发展看好,外延芯片企业的发展尤其迅速,封装企业规模继续保持较快增长,照明应用取得较大进展。中国在LED应用产品方面已成为世界最大的生产和出口国,新兴的半导体照明产业正在形成。

2.2.1我国LED产业发展简况

(1)LED产业链基本情况

根据有关统计,2008年我国从事LED产业的企事业单位已有3,000多家,其中从事外延芯片的单位约40多家,后工序封装企业有600家,其它均为LED应用和产业配套的企业。2008年生产LED器件520亿只,增长13%,高亮度芯片360亿只,增长71.4%,其中GaN蓝、绿芯片120亿只,增长85%,整个LED产值(含芯片、器件及应用产品)约700多亿元。在原材料、外延生长、芯片制造、器件封装、应用产品及配套、设备仪器等方面,已形成较完善的产业链。

(2)外延生长、芯片制造

国内从事LED外延芯片的研究开发单位主要有北京大学、清华大学、南昌大学、中科院半导体所、物理所、中电13所、55所、北京工业大学、山东大学、南京大学、华南师范大学、厦门大学、深圳大学、中南理工大学、西安电子科技大学以及新成立的中科院半导体照明研发中心。从事生产的企业主要有厦门三安、大连路美、上海蓝光、上海蓝宝、山东华光、杭州士兰明芯、江西晶能光电、河北同辉、厦门乾照、武汉迪源、廊坊清芯、甘肃新天电、西安中为、扬州华夏集成、广州普光、沈阳方大、江西联创、南昌欣磊、上海大晨、武汉华灿、上海宇体、深圳世纪晶源、深圳奥伦德、东莞福地等,还有外资企业厦门晶宇、宁波灿园、晋江晶兰及厦门明达等,另有在北京、大连、郴州等地筹建的3~5个单位,共计约30个单位。这些企业2008年共生产高亮度芯片360亿只,其中GaN蓝、绿芯片120亿只,分别比上年度增长71.4%和85%,另外,还取得了很多研究成果,并封装成白光,发光效率的产业化水平达70~80lm/W,预计发光效率2009年产业化将达90~100lm/W。

(3)器件封装

全面LED封装企业约600家,具有一定规模的封装企业约100家,主要封装企业有厦门华联、佛山国星、江苏稳润、广州鸿利、宁波升谱、江西联创、天津天星、廊坊鑫谷、深圳雷曼、深圳量子、深圳瑞丰、珠海力丰等,还有不少外商投资的封装企业,如亿光、光宝等。从事功率LED封装研发的单位有中电13所和华中理工大学等。2008年封装器件达520亿只,增长13%,封装能力超过600亿只/年,能封装市场上需求的所有外型种类。功率LED封装的发光效率产业化水平为80~90lm/W,热阻可控制在10℃/W以内,能满足全国LED应用产品的要求。

(4)应用产品

全国LED应用产品企业约2,000家,有原来生产LED及照明灯具的企业加入到应用产品的开发和生产,但更多的是新创办的中小企业,规模偏小。目前应用产品主要用于信息显示、交通信号灯、景观照明及部分背光源,2009年LED重点开展功能性照明的应用产品,如道路照明、隧道照明、地铁、地下停车场等照明,以及部分商业上用的室内照明灯具,如筒灯、射灯等。据有关部门统计,2008年应用产品的产值达540亿元。

2.2.2国内半导体照明产业发展的特点

国内近几年半导体照明产业的发展呈现以下五个特点:

(1)国家及地方政府支持

国家相关主管部门积极主持半导体照明产业的发展,制定“十一五”发展规划时,已明确提出具体目标。今年工信部七号及九号文件将考虑更多的优惠政策,还以863项目、电子发展基金、产业项目等各种形式支持半导体照明产业的发展,有超过20个省、市地方政府以LED工程及各种方式给予很大支持,这将加快发展LED产业的进程。

(2)增资扩产,筹建新企业

很多企业近几年均增加投资扩大生产规模,购置新设备,如近年来购置MOCVD设备50~60台及芯片制造设备几百台套,计划购置新的MOCVD设备100多台,购置后工序自动封装设备几千台套等。另外,近几年新开办的前工序外延、芯片企业有十多家,封装企业有几百家,很多私营资本大量投入,促进了产业化水平。

(3)发展速度快

我国近几年来LED产业发展速度比国际的发展速度快很多,尤其是高亮度LED芯片。2006~2008年增长率分别为100%、75%、71.4%,封装器件增长率,除2008年受国际金融危机影响只有13%外,其它年度均超过20%的增长速度,应用产品的开拓广度和应用范围也是少有的。

(4)抓紧标准制定

国内LED产业从2006年开始,各相关部门抓紧制定LED的相关标准,工信部标准工作组为主制定20多项标准,中国照明电器标委会制定10多项与LED应用有关的标准,以及其它相关部委制定的产品标准,至2008年共有超过50项标准已制定完成,部分标准在报批阶段。另外,我国与国际CIE及IEC组织和其它标准机构积极交流并参于相关标准的制定,国内还制定了很多地方标准,这将对LED的推广应用起到推动作用。

(5)国内市场需求大

由于LED产品具有节能、环保、寿命长等很多优点,符合国家节能减排和低碳经济的发展政策,应用面非常广,据有关研究预测,LED在信息显示、背光源、汽车用灯、交通信号灯等市场的份额将达到千亿只,加上照明领域的LED市场共有几千亿元的市场潜力。

2.2.3LED产业发展中存在的主要问题

我国LED产业发展较快,但技术水平与国际上的差距还比较大,有人估计相差3~5年。国内在半导体照明领域已经形成一定特色,其中户外景观照明发展最快,已有上百家LED路灯企业,并建设了几十条示范道路,但国内在大尺寸LCD背光和汽车前照灯方面仍显落后。产业发展中存在两个主要问题是:

(1)缺乏有自主知识产权的核心技术

核心技术主要是外延生长、芯片结构、功率LED封装,由国际上几个主要企业所垄断,以致我国LED产品缺乏核心技术,在国际上很难有竞争力,还可能引起专利纠纷。当前中国半导体照明产业大而不强,核心竞争力仍有待进一步提升。

(2)企业规模偏小

不管是前工序外延、芯片企业或是下游的器件封装、应用企业,产业规模均偏小,其产品以中、低档为主,缺乏竞争能力。

3半导体照明技术水平和发展方向

3.1外延和芯片

3.1.1技术水平

目前,LED材料制作方式主要是通过MOCVD方式制作(极少数材料通过LPE方式制作,OLED正处于研究之中),从LED芯片制作方式来分,LED分为正装结构和倒装结构(反电极使用)两种。正装结构,即常规的LED,芯片尺寸为6~12mil之间,市场上产品有6mil、7mil、8mil、9mil和12mil,用于不同的应用领域,最高亮度可达200mcd,即30lm/W。倒装结构LED采用金属全反射垂直结构,最大可能地将LED有源层发出的光提取出来,通常倒装结构芯片用于制作超高亮度LED及功率LED。目前,正装黄红光LED从20~200mcd大批量生产已较为成熟,倒装结构小芯片(14mil)LED亮度可达400~600mcd,光效为60~80lm/W,功率芯片光效为80lm/W。GaN基蓝光芯片光效为90lm/W,GaN基绿光芯片光效为50lm/W,功率型GaN基蓝光芯片功率效率为250mW/W。

3.1.2LED外延、芯片关键技术发展方向

(1)研究在位横向外延、量子能级调控、激光剥离等技术,开展LED寿命加速试验和失效机理分析,实现位错密度降低一个数量级以上,外延工艺得到优化。

(2)LED新衬底与新材料的研发应用:藉由新衬底、非极性衬底、新型材料、高光效材料的开发,可获得LED内量子效率的大幅度提高。

(3)研究应变量子阱结构、P型接触层激光掺杂等技术,实现有源层的能带弯曲程度降低,并减少量子阱中电子和空穴的空间分离。

(4)大尺寸LED外延片的开发:藉由外延层结构设计与外延成长即时监控,可大幅度改善外延应力产生的曲翘问题,从而实现大面积的外延片生长,并可间接大幅降低芯片成本。

(5)研究可控非平面化、光子晶体和等离子体增强等新技术,进一步提高芯片的发光效率,实现高端照明应用产业化。

(6)薄膜氮化镓芯片:基于激光剥离蓝宝石衬底工艺的薄膜氮化镓芯片工艺已经由学术研究渐渐转向产业化,目前,已有不少国际大厂及行业新星推出薄膜氮化镓芯片,而且业内最高性能表现者,也是以基于薄膜氮化镓芯片工艺技术的产品居多,例如Cree、LumiLEDs、Osram、Nichia、SemiLEDs等。

(7)制备出主波长为250~380nm的紫外LED,利用其高于蓝光的能量特性,可扩大LED应用于医疗、消毒、杀菌等环保领域,进一步更可激发高效白光荧光粉,制备出白光LED,提高光效,节约能源。

(8)产业化指标:2010年,功率型GaN基蓝光芯片功率效率>300mW/W,封装白光成品光效>100lm/W;2012年,功率型GaN基蓝光芯片功率效率>400mW/W,封装白光成品光效>130lm/W;2015年,功率型GaN基蓝光芯片功率效率>500mW/W,封装白光成品光效>160lm/W。

3.2器件封装

3.2.1LED封装关键技术

(1)散热技术

传统的直插式LED封装结构,一般是用导电或非导电胶将芯片装在小尺寸的反射杯中或载片台上,由金丝完成器件的内外连接后用环氧树脂包封而成,其热阻高达250~300℃/W。新的大功率芯片若采用传统式的LED封装形式,将会因为散热不良而导致芯片结温迅速上升和环氧碳化变黄,从而造成器件的加速光衰直至失效,甚至因为迅速的热膨胀所产生的应力造成开路而失效。因此,对于大工作电流的大功率LED芯片,低热阻、散热良好及低应力的新的封装结构是技术关键。采用低电阻率、高导热性能的材料粘结芯片,在芯片下部加铜或铝质热沉,并采用半包封结构,加速散热,甚至设计二次散热装置,来降低器件的热阻。在器件内部,填充透明度高的柔性硅橡胶,在硅橡胶承受的温度范围内,胶体不会因温度骤然变化而导致器件开路,也不会出现变黄现象。零件材料也应充分考虑其导热、散热特性,以获得良好的整体热特性。

(2)大功率LED白光技术

半导体PN结的电致发光机理决定了LED不可能产生具有连续光谱的白光,同时单只LED也不可能产生两种以上的高亮度单色光,只能在封装时采用一些工艺方法合成白光。常见的实现白光的工艺方法有以下三种:①蓝色芯片上涂敷YAG荧光粉,芯片的蓝色光激发荧光粉发出黄绿光,黄绿光与蓝色光合成白光。该方法制备相对简单,效率高,温度稳定性较好,具有实用性。缺点是布胶量一致性较差、荧光粉易沉淀导致出光面均匀性差、色调一致性不好、色温偏高,显色性不够理想。②RGB三基色芯片发光混色成白光,或者用蓝+黄绿色双芯片补色产生白光。只要散热得法,该方法产生的白光较前一种方法稳定,显色性较好,但驱动较复杂,成本较高,另外还要考虑不同颜色芯片的不同光衰速度。③在紫外光芯片上涂敷RGB荧光粉,利用紫光激发荧光粉产生三基色光混色形成白光。但目前的紫外光芯片和RGB荧光粉效率较低,环氧树脂在紫外光照射下易分解老化。

同时功率LED产品要实现产业化还必须解决以下技术问题:①荧光粉涂布量控制:LED芯片+荧光粉工艺采用的涂胶方法通常是将荧光粉与胶混合后用分配器将其涂到芯片上,在操作过程中,由于载体胶的粘度是动态参数,荧光粉比重大于载体胶而产生沉淀,以及分配器精度等因素的影响,此工艺的荧光粉涂布量均匀性控制有难度,导致了白光颜色的不均匀。②芯片光电参数配合:半导体工艺的特点决定了同种材料同一晶圆芯片之间都可能存在光学(如波长、光强)参数和电学(如正向电压)参数的差异,RGB三基色芯片更是这样,对于白光色度参数影响很大。③根据应用要求产生的光色度参数控制:不同用途的产品对白光LED的色坐标、色温、显色性、光功率(或光强)和光的空间分布等要求不同,上述参数的控制涉及产品结构、工艺方法、材料等多方面因素的配合。在产业化生产中,对上述因素进行控制,得到符合应用要求、一致性好的产品十分重要。④LED芯片荧光粉直接涂覆技术开发:藉由荧光粉选择,厚度均匀涂覆可进行色温控制,提高封b产品一致性。

(3)测试技术与标准

随着大功率芯片制造技术和白光LED工艺技术的发展,LED产品正逐步进入照明市场,显示或指示用的传统LED产品的参数检测标准及测试方法已不能满足照明应用的需要。国内外的半导体设备仪器生产企业也纷纷推出各自的测试仪器,不同的仪器使用的测试原理、条件、标准存在一定的差异,增加了测试应用、产品性能比较工作的难度和复杂性。同时由于LED用于照明工程仅是近几年的时间,因此国内外还均未形成完善的半导体照明标准体系。随着半导体照明的广泛应用,产品规范与标准问题愈显突出,建立系统、完善的半导体照明标准体系是产业规范化的重要手段,也将促进国家半导体照明产业发展和技术创新,促进LED产品市场的有序发展和壮大。

(4)筛选技术与可靠性保证

由于灯具外观的限制,照明用LED的装配空间密封且受到局限,密封且有限的空间不利于LED散热,这意味着照明LED的使用环境要劣于传统显示、指示用LED产品。另外,照明LED处于大电流驱动下工作,这就对其提出了更高的可靠性要求。在产业化生产中,针对不同的产品用途,制定适当的热老化、温度循环冲击、负载老化工艺筛选试验,剔除早期失效品,保证产品的可靠性很有必要。

(5)静电防护技术

蓝宝石衬底蓝色芯片的正负电极均位于芯片上面,间距很小,对于InGaN/AlGaN/GaN双异质结,InGaN活化薄层仅几十纳米,对静电的承受能力很小,极易被静电击穿,使器件失效。因此,在产业化生产中,静电的防范是否得当,直接影响到产品的成品率和经济效益。静电的防范技术通常有:①从人体、工作台、地面、空间及产品传输、堆放等实施防范,手段有防静电服装、手套、手环、鞋、垫、盒、离子风扇、检测仪器等;②芯片上设计静电保护线路;③LED上装配保护器件。

3.2.2封装工艺的发展方向

随着未来LED芯片技术的发展,芯片效率将大大提高,单一芯片的光输出也会大大提高,现有的LED封装技术及装备将会发生很大的改变,未来LED封装工艺将会变得更简单,自动化程度也会变得更高,综合成本会大幅度下降。LED封装企业将成为本次改变的推动者,向上推动LED芯片企业改变后段制造工艺,横向互动LED封装装备制造企业适应开发新的LED封装设备,向下推动灯具制造企业紧跟LED技术发展的趋势,在高光效、低发热的新器件应用上改变现有的笨重LED灯具,服务于节能社会。灯具制造商兼并收购LED封装企业将成为新的趋势,高功率LED器件的国家和行业标准将会出台,各类LED应用将会得到发展。封装工艺技术发展方向为:

(1)单颗LED的效率提升使得发热大幅减少,单颗高功率LED芯片的面积也会大幅度减小。

(2)发热变少与应用上对单一LED光源的高光通量需求使集成化封装成为主流,集成化封装LED器件的热聚集效应使LED器件的整体导热效率变得极为重要,能够大幅降低热阻的共晶焊接技术将成为LED芯片封装技术的主流。

(3)降低成本的需要使非金丝焊接技术将大规模应用,铝丝焊接、铜丝焊接、直接复合等技术将大量应用。

(4)硅胶成型技术、非球面二次光学透镜技术等出光技术都将成为LED封装技术的基础。

(5)定向定量点胶工艺、图形化涂胶工艺、二次静电喷荧光粉工艺、膜层压法三基色荧光粉涂布工艺、芯片沉积加压法等白光工艺都将应用在LED封装工艺中。

3.3LED应用产品

3.3.1产品主要分类

(1)背光显示:主要用于手机、相机、PDA、MP4、电脑和电视机等产品的背光及显示。

(2)汽车灯:可分为汽车外部使用及内部使用两种。内部包括仪表板、空调、音响等指示灯及内部阅读灯;外部使用则包括刹车灯、尾灯、方向灯、侧灯、车前灯等。

(3)道路照明:包含LED路灯、庭院灯、隧道灯。

(4)室内照明:包含筒灯、射灯、台灯、办公场所及商场照明灯。

3.3.2产品主要技术特点

(1)背光显示:节能、环保、高显色性、响应快、颜色饱和度高。

(2)汽车灯:抗震性好、响应时间短、高效率、低能耗、体积小、重量轻、防眩光性能好。

(3)LED路灯:光效高、寿命长、响应快、高显色性、无污染、无谐波辐射。

(4)室内照明:亮度和色彩可控制、外形小、寿命长、方向性强、节能。

3.3.3未来发展方向

背光显示将朝着大尺寸(22in以上)方向发展,解决高光效、高均匀性、超薄、低成本问题。

未来LED汽车灯具的重点研究方向是开发白光LED前照大灯,以及LED车灯与AFS(自适应性车灯控制系统)结合使用。目前LED车前大灯的热管理是最大难点,要在恶劣、狭小的空间里将大量的热量散发出去,是需要认真研究探讨的问题。

LED路灯要大量代替现行高压纳灯,重点要提高光效、降低热阻、降低成本、增加使用寿命。

室内照明将重点解决成本问题,开发高显色指数和宽光谱的LED光源,满足室内照明对光源质量的高要求。

3.4半导体照明产业发展方向

(1)蓝、绿光芯片的大规模产业化技术。主要是使外延芯片生产工艺技术成熟,产品质量稳定可靠,进一步提高芯片成品率,形成大规模产业化技术。

(2)功率型高亮度蓝、绿光外延片及芯片产业化技术。主要研究内容为调整MOCVD生长条件,调整掺杂溶度和有源层结构,提高内量子效率和外量子效率,解决大尺寸芯片加工产业化技术。

(3)高亮度红黄光外延片及芯片产业化技术。主要研究现有的红黄光外延片及芯片产业化技术,进行技术提升与突破,实现功率型高亮度外延片及芯片的大规模产业化。

(4)LED封装新工艺及新材料开发。围绕应用产品进行LED封装新工艺及新材料开发,主要研究内容是组合模块封装结构、多芯片集成化、白光LED单元、功率型LED封装,以及开发新型封装材料(如玻璃、陶瓷、金属等)来代替易老化的环氧树脂。

(5)三基色芯片大功率LED阵列封装技术。主要研究内容为三基色芯片白光混色技术,三基色芯片优选及长期工作光衰问题,白光大功率(1~5W)三基色阵列取光、散热优化设计,产业化生产工艺技术。

(6)LED照明产品应用开发。主要是LED照明应用开发,即研究白光LED灯具结构、色温、光学系统设计、电路、散热、密封、防水、防震、防电压冲击等,解决白光LED应用于照明市场的问题。

(7)LED应用产品开发及配套系统。主要包括高亮度LED照明系统开发,各种特种照明和整理照明灯具的研究与开发。

4结论

半导体照明为我们展示了美好前景,我们相信半导体照明会在不久的将来绽放更加绚丽的光芒。

参考文献

    【办公范文】栏目
  • 上一篇:培训情况总结(收集2篇)
  • 下一篇:应届毕业生个人自荐信(收集2篇)
  • 相关文章

    推荐文章

    相关栏目