关键词:高中数学;思维障碍
高中数学的数学思维虽然并非总等于解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。
根据布鲁纳的认识发展理论,学习本身是一种认识过程,在这个课程中,个体的学是要通过已知的内部认知结构,对"从外到内"的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的"媒介点",这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的"媒介点"时,这些新知识就会被排斥或经"校正"后吸收。
因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利"交接",那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。
1.在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种"跳一跳,就能摸到桃"的感觉,提高学生学好高中数学的信心。
例:高一年级学生刚进校时,一般我们都要复习一下二次函数的内容,而二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法学生普遍感到比较困难,为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助,而且在整个操作过程中,学生普遍(包括基础差的学生)情绪亢奋,思维始终保持活跃。设计如下:
1〉求出下列函数在x∈[0,3]时的最大、最小值:(1)y=(x-1)2+1,(2)y=(x+1)2+1,(3)y=(x-4)2+1
2〉求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值。
3〉求函数y=x2-2x+2,x∈[t,t+1]的最小值。
上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。
2.重视数学思想方法的教学,指导学生提高数学意识。
数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿那道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。
3.诱导学生暴露其原有的思维框架,消除思维定势的消极作用。
在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于突破学生的数学思维障碍会起到极其重要的作用。
【关键词】高中数学;分层教学;理论实践
一、分层教学理论概念探析
分层教学理论的诞生,主要是为了能够弥补以往的教学方式无法针对水平不同的学生进行有效性教学的一种教学方式,这种教学理论的提出对于教学改革有着非常重大的意义,在二十世纪初期,分层教学的理论被提出,这种教学理论倡导对于不同水平的学生利用不同的方式来进行教学,使得处于各个水平阶段的学生都能够通过这种方式来提升水平。有些人认为,一些学生无法取得良好成绩主要是因为智力的原因,但是美国的一位专家却不认可这个原因,这位专家认为这些学生之所以无法取得良好的成绩,是因为他们没有获得适合自己的教学条件以及环境,并不是因为智力因素的原因,分层教学理论也就这样出现了,这种理论的出现也主要是为了给不同类型的学生提供适合他们的教学环境以及条件,从而使得每一个学生都能够获得进步和提升。对于高中数学来说,分层教学的方式是非常有意义的,因为通过实践我们能够发现,如果不能按照学生的具体水平来实施具有针对性的教学方式,那么所获得的教学效果是非常有限的。以往的一锅端教学方式,对于学生的心理发展和生理发育的不均衡性是缺乏关注的,同时把学生的学习兴趣和态度以及能力都看作智力因素来对学生进行定义,这也是不符合客观事实的。学生之间的各个方面的差异一直是客观存在的,如果一直按照原有的单一的教学方式,必然会不利于学生的数学水平提高,长此以往,会造成学生的数学水平两极分化更加严重。所以,在高中数学的教学过程中,利用分层教学的方法是符合客观需求的,同时也符合因材施教的教学要求,最重要的是能够提升对于所有学生的教学有效性。
二、高中数学实施分层教学的必要条件
首先,在实施分层教学之前,应该对于学生的具体情况进行了解,通过问卷调查、走访家长以及观察和谈话等方式,对学生的数学水平、数学学习方法以及情感进行了解和掌握。另一方面,也要充分考虑到学生的自尊心以及在日常生活中所面临的心理压力,在进行分层教学之前,进行思想教育工作是十分必要的,要把原因说清楚,让每个接受分层教学的学生能够清楚地认识到分层教学是对自己有利的,使得不同数学水平的学生都能够在教学过程中得到提升,潜力得到充分发挥。其次,要让学生能够通过自己的数学水平、数学成绩以及态度来自主选择学习层次,教师根据学生所进行的选择结合自己对于学生基本信息的了解以及学生的潜力和心理特征等方面,把学生按照2∶6∶2的比例分为三种层次,在分层的过程中,也要制定必要的发展目标和基本目标,并且要根据班级内部的具体情况来进行灵活的调整。
三、高中数学实施分层教学的具体措施
二面角作为空间中最重要的角之一,我们认为不管是哪一种教材体系,都应当把它列为重要的研究对象。而教材对二面角的处理仅仅设置了1课时,给师生以一带而过的感觉。特别是对二面角平面角的作法,绝大多数学生在一节课的时间内难以掌握,所以当学生都无法找到计算对象时,就更谈不上去求解它了。另外,该部分内容又不容易自然地纳入向量方法体系之中。因此,建议增加关于二面角的例题。一方面,把二面角的求解与向量方法结合起来;另一方面,借此适当地提高综合推理的训练。因为空间中的角度(也包括距离)是立体几何中重要的度量问题,这些问题的解决又一定程度依赖于综合推理。正如课程标准中要求所说:“把几何推理与代数运算推理有机地结合起来,为学生的思维活动开发了更加广阔的空间,在教学中要紧紧把握这个大方向,不能有所偏废。”
二、用向量方法研究平行关系的问题相对较少
教材中利用向量方法研究垂直关系的例题、练习及习题比比皆是,但利用向量方法研究平行关系的例题却为数不多。且不能很好地体现向量方法的优越性。
例如教材第30页例3,课堂教学中发现,学生首先想到的不是用向量方法,反而更容易想到的是用相似三角形这一较为熟知的知识点去推证四边形EFGH与,平行四边形ABCD的各边对应平行,并且简洁易行。类似这样的题目还有第41页例5(该题用反证法也很容易证明),第79页参考例题2(该题用三角形中位线及等腰三角形底边上的中线也是高线的知识也很容易解决),限于篇幅,不再一一赘述。总之,这些题口给我们的感觉只是为了介绍向量方法,但却不能显示出向量方法的优越性。另外,在练习和习题中再很难找到用向量方法来研究平行关系的题目了。笔者建议,教材要让所选例题更具有典型性和代表性,并且在练习和习题中编拟一些利用向量方法研究,平行关系(包括线线,平行、线面平行、面面平行)的题目,来充分显示用向量方法解决立体几何问题的优越性。
三、教材的知识体系需要进一步条理和完整
教材中,球的体积及表面积公式的推导分别用到了教材中未出现的圆柱和棱锥的体积公式,而这些公式无论是对帮助学生理解球的体积及表面积公式的推导过程,还是对在实际应用中的价值方面,都是应当在本章中有所体现的,即使它们是被作为了解的内容。另外,用祖呕原理(这一原理的发现比西方早了1100多年)推导球的体积公式反映了我国古代数学的伟大成就,建议可作为阅读材料介绍给学生,以此,对学生进行爱国主义教育,激励学生的民族自豪感和为国富民强而勤奋学习的热情。总之,教材的改革是要对传统教材中的“繁难偏旧”进行改革,而如果把传统教材中精华的部分也舍掉的话,那肯定不是课程改革的初衷。
在中学阶段,向量方法被应用于立体几何的教学中尚属首次。以上虽不是什么大的问题,但作为中学教材,它是要在全国进行推广和使用的。因此,无论是从它的权威性而言,还是从它的科学性而言,这些“小问题”都希一望引起编者的重视。相信,只要通过教师本着边学、边教、边改进、边完善的精神,中学数学教材的改革必将日趋完善,日趋成熟。
【摘要】《普通高中数学课程标准(实验)》的推出使我国高中数学的教学有了很大提高,但是,我们也应清楚地认识到,任何事物都有一个不断发展和完善的过程,现行教材的结构也不是尽善尽美的。本文认为今后高中数学教材改革有以下几点需要改进:教材应当适度提高对综合推理的训练;应相对增多用向量方法研究平行关系的问题;教材的知识体系需要进一步条理和完整。
【关键词】高中数学教材改革建议
《普通高中数学课程标准(实验)》的推出使我国高中数学的教学有了很大提高,但是,我们也应清楚地认识到,任何事物都有一个不断发展和完善的过程,现行教材的结构也不是尽善尽美的,教材的使用上还会出现一些现行的问题,它需要我们教学时认真思考这些问题,保留传统优秀的东西,摒弃一些繁、难、偏、旧的东西,教学中时刻进行反思,及时总结经验,与同行、与学生广泛展开讨论,寻求解决问题的方案,使自己的教学稳中有变,变中求现行,为我们在数学教学中进行能力培养创造良好的条件。
“研究几何的根本出路是代数化,引入向量是代数化的需要。”基于此,人教版高中《数学》第一册(下B),利用向量方法来研究立体几何问题,这给传统的高中立体几何的教学注入了一股现行鲜的气息,使学生初步体会到作为解决几何问题的通法一一向量方法的威力。但笔者在教学实践中发现了教材中也存在一些美中不足的地方,现对其提出几点意见。
参考文献:
[1]马复.设计合理的数学教学.高等教育出版社,2003.
[2]刘兼,黄翔,张丹.数学课程设计[M].高等教育出版社,2003.
[3]郑毓信.数学教育:从理论到实践[M].上海教育出版社,2004.
[4]戴再平.开放题——数学教学的新模式[M].上海教育出版社,2004.
关键词:高中数学研究性学习问题思考
2004年4月,教育部颁布《全日制普通高级中学数学教学大纲(实验修订版)》首次明确提出:在必修课的内容中安排“研究性课题学习”(12课时),并给出了其教学目标和参考课题。研究性学习,作为培养学生创新精神和实践能力的一种重要途径和载体,无疑是当前我国基础教育课程改革的热点、亮点和难点。应该说,目前中学对数学研究性学习进行了一些积极的尝试,并且取得了一定成绩,体现在推动了学校管理体制的改革,促进了学校、社会、家庭间的相互配合,从整体上推进了数学素质教育的实施,加快了教学设备的更新,为学校发展奠定了基础。而且,数学研究性学习的开展充分尊重与满足师生及学校环境的独特性与差异性,有助于学校形成支持和激励的氛围,有助于教育质量的提高。但是,我们也应该看到,由于数学研究性学习没有非常成熟的经验可供借鉴,因而在具体运作过程中,也会出现一些问题,需要我们认真审视和深入思考,并在实施前就要加以注意。
一、高中数学研究性学习的展开要学会因校制宜
高中数学研究性学习强调要结合学生学习、生活和社会生活实际选择研究专题,同时要充分利用本校本地的各种教育资源。学校内部资源包括具有不同知识背景、特长爱好的数学教师,包括图书馆、实验室、计算机、校园等设施设备和场地。也包括反映学校文化的各种有形无形的资源。有条件的地方应尽量利用高校、科研院所、学术团体等部门的数学人才和数学电子信息资源为数学研究性学习的开展提供有力支持。从某种意义上说,越是困难的地区和学校,对培养学生应用所学知识研究解决实际问题的意识和能力的需求越迫切。上海郊县一所中学的农村学生在数学和生物教师指导下,针对当地经常受到乳虫危害,造成麦子大量减产的情况,成立了“勤虫诱因与防治预报”课题组,他们的研究结果被镇植保站采纳,课题组也深受鼓舞。
除了充分利用校内外教育资源外,学校也要结合自身实际对数学研究性学习的开展进行有效管理。在这方面,上海市晋元高级中学做法有可取之处。他们有研究性学习的两级管理指导协调系统:一是学校和教师,包括研究性学习教研室,教务处、年级组、学生处、团委、总务处,大家分工明确,互相配合。二是教研室与学生之间管理协调系统,例如,他们有高一年级组研究性学习协调委员会,由学生干部担任主要角色,对包括数学研究性学习在内的各类研究性学习进行学生间的协调和管理,有助于及时发现问题,解决问题。
二、教师观念的转变和角色的转换
数学研究性学习的具体操作者是学校和教师,除了学校以外,数学教师的作用更是不容忽视。数学研究性学习是为了让学生“会学数学”,数学研究性学习应视学校学习为起点,以“终身学习”为目标,为了更好的开展研究性学习,数学教师要进行如下观念的转变:以人为本,以问题和问题解决为中心,因为“问题是数学的心脏”:数学研究性学习应面向全体学生,实现“人人学有价值的数学”,“人人都获得必需的数学’,“不同的人在数学上获得不同的发展”。在数学研究性学习的实施中,要让全体同学参与其中,乐在其中;数学来源于生活又回归于生活,因此,数学研究性学习应在学生认知发展水平和已有的知识经验基础上,帮助他们在自主探索和合作交流过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。公务员之家
在数学研究性学习的实施中,数学教师观念转变是前提,同时要求数学教师也要进行角色的转换。首先,数学教师应是学习者。因为“数学课程标准”的理念是“以人为本”,数学研究性学习是人本思想的体现,因此数学教师要摸清学生在数学研究性学习中的心理机制和认知特点,以学习者的身份去体验数学研究,以学习者的立场参与其中,去发现问题,反思问题,进而引发学生学会向数学提问,学会向数学问题解决提问。
其次,数学教师应充当指导者。数学研究性学习是与数学问题的解决密不可分的,而问题的解决又不是一朝一夕之功。为此,数学教师在选题阶段,要针对学生学习与发展需要,结合学校和社区教育资源条件、特点,开发设计适合学生研究的课题。另外,还可提出建议,让学生讨论,形成具体计划,还可提供相关背景知识,诱导学生寻找值得研究的课题:在实施阶段,教师要进行分工指导,帮助学生明确目标任务和职责。另外,数学教师还要对学生进行心理疏导,激励学生研究探索,鼓励学生克服挫折。在方法上,教师也要根据新情况新问题鼓励学生不断对实施方案进行微调。除此之外,教师要指导学生在数学研究性学习中,获得数学科学态度、科研方法、探索兴趣的感悟和体验。
再有,数学教师应充当评价者。这里的评价包括两方面,一是教师对学生的评价,在这一过程中,要注意过程评价与结果评价相结合,多注重过程,注意激励与导向的结合。注意多元化的评价,既要关注学生在数学研究性学习方面已达到的程度水平,更要关注学生行为、情感、态度的生成和变化,一些中学开展的数学研究性学习论文答辩会和成长纪录袋的评价形式值得借鉴;二是数学教师对自身的评价。数学课程的改革,要求教师对任何学习活动都要有反思与体验,对研究性学习也是如此。从这一点来讲,数学教师应当去反思自己在研究性学习中的表现,强化评价意识。只有知道什么样的选题是好的选题,自己才能帮助学生把好关、选好题,只有知道什么样的指导最到位,才会引领学生在数学研究性学习的过程中少走弯路,提高效率。
三、研究性学习的定位及其与数学教学的关系
数学研究性学习是面向全体学生的,而不是只针对少数优秀学生的,它以激发学生主动探索的积极性,培养学生的创新精神为追求目标,鼓励学生介入数学学科前沿的研究,要求学生的研究结果具有一定的科学性,但并不强求每个学生的最后研究结果都必须独一无二。。强调这样的定位,有助于预防数学研究性学习变为新的数学学科竞赛。
由于数学研究性学习的特点,大大改变了以往的教育模式,学生不再只是被动接受者,而是成为学习的主人,是问题的研究者和解决者,而教师则是在适当的时候对学生给予帮助,起着组织和引导的作用。从初步开展数学研究性学习的实践情况来看,凡是认真参加数学研究性学习的学生,基本上都没有影响数学学科内容的学习。访谈结果显示,因为开展数学研究课题的需要,学生“用然后知不足”,常常自觉的加深或拓宽了与课题相关的数学学科课程的学习:有的通过自己的亲身实践,更加加深了对数学学科课程的理解和热爱。因此,是否可以这样说,数学研究性学习和现有数学学科教学之间,不是一个反对一个,一个否定一个,而是互为补充,相互促进的关系。
四、应着眼于使学生认识数学文化的魅力,将知识融入到生活实际
毫无疑问,数学作为一种科学,描述了一种最高的文化成就。美国数学家怀尔德1981年从数学人类学的角度提出了“数学——一种文化体系”的数学哲学观,这是很长时期以来出现的第一个成熟的数学哲学观。数学作为一种文化,除了具有文化的某些普通特征外,还有其区别于其他文化形态的独有特征。数学是科学的语言,是思维的工具,也是传播人类思想的一种基本方式:数学用一种客观的方式将自然与社会连接起来,并具有相对的稳定性和延续性:数学作为一种思想方法,充满着理性精神。学校数学研究性学习的开展有助于学生认识数学文化,在数学研究性学习中,我们要发挥这种魅力对同学们的吸引。一些中学显然认识到了这一点,如在北京某中学进行数学研究性学习的活动动员中,数学组长的发言为同学们提到了海湾战争中的数学,提到了推理小说中蕴涵的数学,提到了古汉语研究中的数学,还提到了经济中的数学、化学中的数学等等,让同学们充分认识到了数学文化的无处不在,同时也认识到了数学文化的传承与发展。一斑窥全貌,由此可见,开展研究性学习有助于让学生们进入到数学文化的氛围,从而感受到数学文化的魅力。如果数学研究性学习能为人们认识数学文化、推动数学文化的发展做一些贡献,那么在未来培养出大批积极主动和有能力的年轻的数学文化传播者,也是指日可待的。
所谓数学建模,从字面意思看,其以数学理论与实际生活的关联为教学重点,其教学内容的设定目标在于培养学生的动手能力、实践能力,力求帮助学生从实践中深入体会数学理论知识.对于高中数学中的建模教学,在国外被重视的时间早于国内,我国1993年的数学课程改革研讨会上才首次提出“建立数学模型”的议题,2003年的高中数学课程标准中才明确了数学建模这一学习活动在高中数学教学大纲中的必要性.
虽然我国正式明文提出有关高中数学中的建模教学的相关内容,但在实践效果来看并不理想.不少高中对于这一议题的实施常常会因不同学校的差异、这样那样的实际情况限制等条件而不完全落实指导思想.加之高中学习阶段的紧张性,常常会形成建模被冠以浪费时间的名号而不被应用.然而,就现状分析来看,高中生们对高中数学的应用能力远不如预想的好.相关教育者及研究人员也逐渐意识到这一严峻问题,终于将眼光投入到建模教学对于高中生思维发展的重要性.
以“高中数学,建模”为关键词查询2000年至2014年十余年时间内的研究理论文献,得出结果29600篇,这一结果是值得我们欣慰的,越来越多的人们关注到高中数学建模的重要性,并不断探索其有效实践方式及效果分析.就建模教学对于高中数学的意义而言,具有多重性.首先,建模教学的内容特殊性可以在学生与老师之间形成良性制动系统,也就是说,老师们在研究建模教学具体操作时,会多方面权衡各方条件及因素,对于课堂设计有促进意义.此外,通过以小组学习为主要教学方式的建模教学过程,可以培养学生们对于高中数学的非智力因素.目前,数学建模在高中数学中的实施难点在于多数教师并不具备数学建模的教学经验,教师们在不断尝试,因此,数学建模的收效性一般.
二、高中数学建模对学生的多方位影响
(一)拓宽学习范围,以数学为中心融合进其余学科的知识,有利于学生视野范围的扩大.数学学科以基础学科的身份在其余学科中常常出现,比较常见的包括物理、化学、生物,而表面看关联不大的语文学科也处处体现着数学的思想.原本传统高中数学教学过程中,往往忽视了这一点,造成学生们的思维局限性.而数学建模的出现对这一现状的改善有促进作用.其中,通过有效的课堂教学模式及教学内容的设计,建模教学可以集合数学与物理、化学、生物甚至是美术的问题来供学生们思考.换言之,在教学过程中体现数学与其他学科之间的呼应关系,既可以帮助学生巩固数学知识,更能起到辅助学生进一步理解其余学科内涵的作用.学科间的交叉无形中培养学生自主建立建模意识,有利于学生们思维的发散性发展.
(二)以创新性思维影响学生的思维过程,在潜移默化中提升学生的思维水平.建模教学区别于传统教学的明显特征在于其创新思维的引入.通过课堂上的多元化教学方式的促进,可以培养学生的创新思维能力,在面对贴合实际的理论问题时,学生们会受到建模思想的印象而自发地运用多维度分析、辨别能力,这对于学生们发散性思维的养成很有益处.而建模教学中的创新性并不是空谈,其有实际的理论支撑以及丰富的知识源储备作依托.同时,建模教学对于学生的思维深刻度与灵活度也有一定要求,可以在过程中锻炼学生独立、自觉寻求问题最佳解决方案的能力,对其今后的工作、生活能力的提升也有帮助.
(三)以倡导学生自主学习、实践的操作过程,培养学生自主探索问题解决方法的良好学习习惯.区别于传统高中数学单一的教学方式,建模教学不再将学生们的学习过程局限于接受传输、记忆要点、模仿练习的枯燥过程,而是将自主探索、主动实践、合作学习、多样性自学等教学模式融入到高中数学的课堂教学中.从学生心理条件的分析中我们可以看到,上述几种建模教学的常用方式有助于学生在思维养成中的主动性的培养,改变传统教什么做什么的呆板模式,令学生的学习过程成为教师初期引导、学生后期再创造的愉快过程.此外,多样性、多元化、信息化的教学过程也符合现代社会的发展趋势,对于高中生思维的锻炼有很大帮助,在学习能力提升的同时,可以令学生掌握很多学习之外非常有用的实践能力,真正实现学生们各方面能力的综合提高.
三、议题要点概括
建模对于培养学生思维能力及实践能力有重要意义,在当前建模思想被广泛重视的时代背景下,相关教育工作者及研究人员需要注意自身对于学生们的引导方式及方向.以对实际问题进行抽象分析的原则对教学内容建立对应的、恰当的数学模型.值得注意是,在当前建模教学依旧处于探索期的阶段,教师们或许需要借助于传统教学与建模教学的对比方式,在效果及便捷性方面给学生提供直观感受,以明显的实践结果令学生自主体会建模教学的优点与优势.此外,在建模教学对学生思维发展的影响的探究过程中,需要注意不能忽视学生的非智力因素的培养与课堂教学的融合.
高中数学的建模过程所包含的问题应该来源于学生的生活实际,而不能以学生较难接触到或不具备普遍性的生僻现象作为建模对象,否则将因与实际生活脱节而增强学生对建模过程的反感情绪.此外,高中学生的数学知识储备与解决问题能力水平相对不高且具有一定局限性,因此,高中数学中的建模过程不能设计得过于复杂.