关键词:材料化学专业实验科研结合
中图分类号:G642文献标识码:A文章编号:1673-9795(2013)05(a)-0045-01
材料化学专业是一个在我国多所高校都设立的本科专业,这个专业研究材料的制备、组成、结构、性质及其应用,具有明显的交叉学科、边缘学科和应用型学科的性质。同时,材料化学专业是一门应用型理工科专业,实验教学在此专业的教学活动中占有重要的地位。实验教学开展的好坏将直接影响本专业毕业生的水平。另一方面,实验教学是高等院校理工科专业教学体系的重要一环,在培养学生创新精神和实践能力方面具有举足轻重的作用。从大的方面讲,高等院校人才培养的结果将直接影响我国的国际竞争力,因为国家间的竞争是人才的竞争,高素质的人才是一个国家创新的根本,因此,培养创新型人才就成为摆在我国高等教育面前最紧迫的任务。针对上述观点,为更好的培养我校材料化学专业本科生的实验探索能力和创新精神,结合我校在化学与材料科研方面的特点,经过多年的实验教学探索,我们建立了以前沿科学研究融入材料化学专业实验的新型实验的教学方式,以科研骨干力量作为实验指导老师,一方面强化学生的基础动手能力,强调基本功;另一方面带领学生紧跟学科发展方向,突出以学生为中心的实验教学模式,形成依托科研方向和科研项目的研究式为主的实验教学方式。
1专业实验的基本构成
我们将专业实验课程分为材料合成、结构及性能测试实验和材料加工与设计实验两大部分,这两部分专业实验贯穿两个主旨,一个是加强学生对专业知识的理解和掌握,同时,提高学生的基本动手能力和基本实验素养,学生在学习完成无机化学、结构化学、电化学、物理化学以及其它前导课的理论课及实验课的基础上,进一步学习材料化学方面的相关理论及实践知识。这一部分包括的实验有:(1)LaCeCoNiO3钙钛矿超细粉末的制备;(2)电沉积法制备ITO/TiO2/CdS半导体复合薄膜;(3)X射线衍射粉末法物相分析;(4)染料敏化二氧化钛纳米晶薄膜电极的光电流测试;(5)TiO2/CdS半导体膜电极光电性能的测试;(6)采用比表面分析仪测定改性纳米TiO2的比表面积;(7)钙钛矿型汽车尾气三元催化剂性能的测试;(8)以SBA-16为模板电沉积Fe;(9)CVD法制备碳纳米管;(10)气敏传感器件的加工、组装及测试;(11)偶氮苯的电子结构和光谱性质的理论计算;(12)金红石相TiO2的晶体结构及相关性质的计算;(13)压力对金红石相TiO2的带系的调控作用等。通过该课程的学习,使学生对功能材料及纳米材料的制备原理、方法有深刻的理解和认识,并使学生能将化学的基本理论与功能材料有机结合起来,培养学生独立思考和创新能力来解决材料化学问题,使学生对现代材料化学的研究现状和发展趋势有所了解。另一方面,是学生科学研究能力的培养和创新能力的培养,利用实验教师的紧跟时代的科研课题,激发学生的学习热情,同时,让学生体会到在科学探究过程中的乐趣。包括有:(1)基于纳米结构TiO2光电池的组装及其性能;(2)TiO2纳米粒子的制备、表征及其光催化性能;(3)功能复合微球设计合成及性质研究等实验,这些实验的结果并不是唯一的,学生可以选择自己感兴趣的方向选择其中一个。通过材料化学实验,使学生了解无机化合物功能材料领域的最新进展,系统掌握无机纳米粒子、超微粉体的制备、分离、表征以及性质研究等方法,培养学生的综合创新能力。
2专业实验与科研相结合
依托功能无机材料化学教育部重点实验室、光电与能源环境材料省级重点实验室、功能材料省高校重点实验室,我院教师在新型石墨烯材料、半导体光电转换电极材料、光催化材料、化学传感器、光存储材料和有机光电功能材料及器件等方面的研究已经达到了国际前沿水平,同时,承担材料专业化学专业实验教学的老师全部承担参与了国家自然科学基金项目,并且绝大多数老师都是国家自然科学基金项目的项目主持人,这些资源为给学生开展优质的材料化学专业实验提供了保证。学生根据每一位指导教师的研究方向和课题并结合学生自己的兴趣,设计和执行实验方案。在各科研团队老师的指导下,分析实验结果,对存在的问题提出解决方案,最后得出实验结论。随着科研团队研究方向的发展,实验内容每隔三、四年即会调整更新,让学生始终能跟踪材料科学发展的方向,体会到创新的乐趣,自然增加了学生的积极性。
3为学生创造条件继续深入科研
对一些学有所长,并且有时间和精力的同学,我们对他们开放实验室,为学生创造条件。有兴趣的同学可以在课余深入到教师的科研实验室,在相关教师的指导下,进行科学探索研究。因为专业实验的老师绝大部分都是科研骨干,所以学生在上专业实验课程的时候,能够了解各个老师的研究方向并找到自己感兴趣的方向,在课余时间,学生就可以找到相关的老师,继续自己感兴趣的研究,为他们日后打下基础。进几年来,已经有几位本科生在专业实验之后,走进实验室进行科学研究,并凭借其本科阶段的研究经验成功申请到奖学金,到发达国家的大学继续攻读研究生学位。
经过这些专业实验课程的改革之后,学生的上课热情高涨,学习的积极性也极大的提高起来,而且还有一些学生迸发了进一步进行科学研究的热情。这样又倒过来推动了学生对理论课程的学习,从总体上改善了学生的学习效果,能够更好的培养创新型人才。
参考文献
[1]杨琼芬.材料化学专业实验课程体系和教学方法改革探索[J].四川职业技术学院学报,2011,21(3):90-91.
一、金属间化合物材料的概述和应用
金属间化合物是指以金属元素或类金属元素为主组成的二元或多元系合金中出现的中间相。金属间化合物主要指金属与金属间,金属与类金属之间按一定剂量比所形成的化合物,金属间化合物有的已是或将是重要的新型功能材料和结构材料。金属间化合物的历史由来已久,金属间化合物的研究已经成为材料科学研究的热点之一。人们发现许多金属间化合物的强度并不是随温度的升高而单调地下降,相反是先升高后降低。因为这一特性,掀起了新一轮金属间化合物的研究热潮,使金属间化合物具备了成为新型高温结构材料的基础。现在已研究出许多方法和措施,用来改善和提高金属间化合物的塑性,为将金属间化合物材料开发成为有实用价值的结构材料打下基础。金属间化合物是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物强度高,抗氧化性能好和抗硫化腐蚀性能优良,优于不锈钢和钴基,镍基合金等传统的高温合金,而且具有较高的韧性,因此金属间化合物被公认为是航空材料和高温结构材料领域内具有重要应用价值的新材料。金属间化合物材料作为近20年内才发展起来的新材料,相对于传统金属材料具有特殊的优点和规律,广泛用于制备金属间化合物基复合材料。金属间化合物相对于金属材料为脆性材料,相对于其他材料则具有一定的韧性,并且具有相当高的塑性。某些金属间化合物还具有反常的强度-温度关系,在一定的温度范围内,强度随着温度的升高而升高,这对高温结构材料的开发和应用给予很大的希望。此外许多金属间化合物材料具有良好的抗氧化性能,耐腐蚀性能和耐磨损性能,如Ni-Al金属间化合物和Fe-Al金属间化合物材料。因此采用金属间化合物和其他材料相复合制备复合材料可以提高金属间化合物材料的力学性能。
金属间化合物具有一系列的优异性能是最具有吸引力的新一代高温结构材料和表面涂层材料。金属间化合物的种类非常多,近年来国内外主要研究集中于Ni-Al金属间化合物,Ti-Al金属间化合物,Fe-Al金属间化合物等含Al金属间化合物的研究。目前金属间化合物材料已经研究和开发的较为广泛。许多金属间化合物材料已经用于铸造,锻压和高温熔炼等。金属间化合物材料具有高温强度好,高温抗蠕变性能强,抗腐蚀性能好,抗氧化性能好等优点,且在一定的温度范围内金属间化合物的屈服强度随着温度的升高而升高。但是金属间化合物材料作为使用的结构材料,还存在硬度低,断裂韧性差以及高温强度低等缺点。将金属间化合物与其他材料进行复合制备金属间化合物基复合材料,以制备出兼具有二者优点的复合材料是当前的重要研究和发展方向。金属间化合物材料具有较高的加工硬化率和较特殊的高温性能,因而被认为是下一代高温结构材料和高温耐磨损材料之一,特别是在改善金属间化合物材料的塑性后,更是受到了广泛的重视和研究。为了进一步提高金属间化合物材料的综合性能,很多研究工作者在金属间化合物材料中加入强化相制备金属间化合物复合材料,即形成金属间化合物基复合材料。可以向金属间化合物中加入碳化物硬质相制备耐磨损的金属间化合物基复合材料。金属间化合物材料具有许多优秀的性能而被广泛的应用到工程领域中。
二、金属间化合物在材料科学与工程专业教学实践中的研究和应用
金属间化合物材料由于具有许多优异的性能而被广泛的应用在工程领域中,所以应该在材料科学与工程专业的课堂教学和实践教学中增加一些金属间化合物的知识和内容。金属间化合物材料主要包括Al系金属间化合物材料,主要有Fe-Al金属间化合物,Ni-Al金属间化合物,Ti-Al金属间化合物等,还有其他的如Cu-Al合金,Cu-Zn合金以及Ni-Ti合金体系等金属间化合物材料。由于一般常用的金属间化合物是由两种金属元素形成的化合物并具有典型的二元相图,所以可以通过认识和了解金属间化合物学习和掌握二元相图的知识内容。此外金属间化合物材料的制备工艺方法也有很多,主要有金属熔炼法,高温自蔓延反应合成法,机械合金化法,反应烧结法,粉末冶金工艺等多种方法。其中反应熔炼法是将不同种金属元素放到熔炼炉中进行熔化形成金属合金熔体使其均匀混合并冷却形成金属间化合物材料。高温自蔓延反应合成方法是通过反应放出大量的热量维持反应继续进行最终形成所需要的金属合金材料。机械合金化工艺过程是利用高能球磨机把两种纯金属粉末放入球磨罐中并加入适量的添加剂进行球磨,粉末的制备由机械合金化过程完成,块体的制备则由烧结过程实现,机械合金化工艺是一种固态反应的过程。机械合金化技术是近年来发展起来的一种材料制备方法,机械合金化工艺通过对粉末反复的破碎,焊合来达到合金化的目的,由于合金化过程中引入大量的应变,缺陷以及纳米级的微结构,机械合金化制备的材料具有一些与传统方法制备材料不同的特性。通过机械合金化工艺就可以制备出金属间化合物粉末。粉末冶金技术是制备金属间化合物材料比较常用的一种方法。以单质或合金粉末为原料,一般是先用塑性加工的方法把粉末制备成所需要的复合材料制件,然后在烧结同时实现了制件的成型。反应烧结法是将不同种金属元素粉末通过热压烧结工艺或者常压烧结工艺形成金属间化合物块体材料。金属间化合物材料的制备通常采用粉末冶金工艺进行制备。
由于金属间化合物材料原料成本较低,制备工艺不复杂,所以对于金属间化合物材料的制备和性能的研究工作可以引入到材料科学与工程专业的实验教学工作中。可以在实验教学的课程中增加金属间化合物材料的制备和性能的研究内容,例如通过反应熔炼法,机械合金化方法和粉末冶金法等制备金属间化合物材料,并对金属间化合物材料的结构和性能进行研究。通过以上实验教学过程可以锻炼学生的实践能力和分析能力,还可以加深学生对材料科学与工程专业知识内容的认识和了解。在上述实验方法中,其中机械合金化工艺是比较实用并且能够在实验室里进行的。机械合金化工艺是将两种不同的金属粉末混合并经过高能球磨过程制成金属间化合物粉末,并通过烧结过程制备金属间化合物块材。机械合金化工艺可以在实验室里进行,可以安排学生通过机械合金化工艺制备金属间化合物材料。此外在本科学生的专业课程设计和毕业设计期间也可以安排学生进行金属间化合物材料的制备和性能的研究工作。通过对金属间化合物材料的制备和性能的研究工作,使得学生充分的认识和了解金属间化合物材料的性能特点,并加深学生对所学习的材料科学与工程专业课程知识内容的认识和了解,使得学生对材料科学与工程专业的课程内容有一定的掌握和熟悉,并通过实验教学过程提高了学生的实践能力和分析问题解决问题的能力,扩展了学生的知识面。所以本文作者认为应该在材料科学与工程专业的实践教学过程中增加一些关于金属间化合物材料的实验课程,并以金属间化合物材料的制备和性能的研究内容作为实验教学课程,这将有助于提高学生的实践能力并扩展了学生的知识面,这为本科学生以后学习材料科学与工程专业的知识内容打下坚实的实验基础。
三、金属间化合物材料未来的研究方向和发展趋势
关键词:培养计划;培养目标;材料科学与工程;麻省理工学院
欧美国家在20世纪60―70年代开始设立材料科学与工程系。名称变更反映了对材料领域研究认识的变迁,即“材料研究需要依据其行为和特征,而不是依据材料类型来进行”。1998年教育部对材料类本科专业目录进行了调整,将原来划分过细的十多个材料类小专业合并成了现在的冶金工程、金属材料工程、无机非金属材料工程、高分子材料与工程、材料物理、材料化学等六个专业。同时,在引导性专业目录中还设置了材料科学与工程一级专业。虽然以材料科学与工程一级大学科来设置专业是必然趋势,但材料科学与工程人才培养模式仍在探索之中[1]。同济大学当年就设置了材料科学与工程本科专业,期望以欧美的模式来培养材料学科人才。实际上,早在20世纪80年代,当时的同济大学建筑材料工程系就为建筑材料专业的本科生开设了材料科学导论、断裂力学、表面物理化学和传热、传质与动量传递(简称三传)4门基础课程。近几年因为参与学院材料科学与工程专业培养计划的修订工作,查阅了国内外许多大学这个专业的培养计划,国内高校在材料科学与工程专业培养计划上的认识一直存在争议。美国麻省理工(MIT)材料科学与工程专业本科培养计划的公开信息最多,不仅有课程列表和学分要求,还有课程的详细简介。尤其是麻省理工的开放课程服务(OpenCourseWare),使得我们还能够进一步了解课程大纲和部分内容。此外,MIT材料学科是USNews全美排名第一的,他们的培养
计划应该具有更好的借鉴意义。本文在反复仔细研究其有关本科培养的各种公开资料的基础上,对其培养计划进行了分析,结合自己的教学工作实践,总结了一些心得体会,希望与国内同行共享。
一、麻省理工材料科学与工程专业的培养计划
MIT材料科学与工程系设3个专业(Course)。其一为一般意义上的材料科学与工程专业(Course3),学生所得学位是材料科学与工程理学学士(BachelorofScienceinMaterialsScienceandEngineering),其所授学位是被ABET(AccreditationBoardforEngineeringandTechnology,美国工程与技术鉴定委员会)授权的,绝大部分学生都选读这个专业。其二为课程选择度更大的一般专业(Course3-A),这个专业的毕业生将获得没有特别指定专业领域的理学学士(BachelorofSciencewithoutspecification)学位,系里并不寻求ABET对这个学位的授权,只有很少学生选择这个专业,常常是医学、法学、MBA预科生选择这个专业。第三是考古与材料专业(Course3-C),学生所得学位是考古与材料理学学士(BachelorofScienceinArchaeologyandMaterials),系里也不寻求ABET对这个学位的授权。从系里是否寻求对所授学位授权就可以看到,MIT材料科学与工程系本科生的主要专业是一般意义上的材料科学与工程专业(Course3)。后面的讨论主要针对Course3的培养计划进行。
1.课程和学分要求
该培养计划的要求包括:(1)MIT的一般要求,共17门课程,其中自然科学6门,人文社科8门,限选科技课程2门,实验课程1门。(2)交流能力课程(CommunicationRequirement)4门。(3)系内课程,包括一套核心课程(Coresubjects,共10门课),一个论文或2个实习以及4门限选课程,合计184~195学分。其2011―2012版本的课程和学分要求见表1,表中课程名称前面的数字表示课程号,后面跟表示学分的数字、课程性质、前修或同修课程号。MIT每门课程的学分由三部分组成,表示学习课程所需要的时间分布,中间用短线隔开,第一个数字表示讲课时间,第二数字表示实验、设计或者野外工作时间,第三个数字表示预习的时间,是以中等学生所需要时间估计的。1个学分大约相当于一学期需要14小时的学习时间。从表1可见,一般专业课程,预习所需时间是讲课时间的2~3倍。
备注
*可以代替本先修课程的其他先修课程列在课程描述页面。
(1)这些课程可以算作必修课程或者限选课程的一部分,但不能同时计算。
(2)可以选9-12学分。
(3)通过申请,可以被类似课程替代。
2.限选课程的选择
中列出了21门限选课程,每个学生只需要选择4门课(48学分)。理论上,学生可以在21门课程中任选48学分,甚至经过批准,还可以选择其他系的课程或者研究生课程来代替。实际上,由于材料的范围很广,这些选修课程是根据主要的研究领域来设置的,它们是:生物与聚合物材料(Bio-andPolymericMaterials),电子材料(ElectronicMaterials),结构与环境材料(StructuralandEnvironmentalMaterials),基础与计算材料科学(FundamentalandComputationalMaterialsScience)。
因此,在MIT材料学院的网页上,曾经列出了各领域推荐的限选课程。网页上还列出了每一个方向的咨询教授,以方便对上述领域某一方面更感兴趣的学生选课。
3.部分课程大纲和教学情况分析
(1)材料科学与工程基础课程
这个课程为15学分(5-0-10),总是与“材料实验”一起选修。课程安排也是交叉进行,实验周不上课,一共有4个实验周。这样,材料科学与工程课程讲课时间就缩短为9周(一个学期14周,最后一周为考试)。其课程安排为周一、三、五各2小时的讲课(lecture),周二和四各1小时的复习课(recitation)。所以一共27次讲课,18次复习课。实际讲课为24次,另外3次课为测验和考试。最后一次考试并不是考全部课程内容,即每次测验和考试都是分段内容。
这个课程由两个教授分别讲授,每个教授都是24次课,因此可以推论,每次每个教授将讲1小时。一个讲授结构和化学键(StructureandBonding),一个讲授热力学和统计力学学(ThermodynamicsandStatisticalMechanics)。
两部分课程分别布置6次作业,每部分每次都是2~3个题目,都有交作业的期限,没有按期交作业的,该次作业成绩为0。作业答案在交作业期限过后就会立即公布。课程总成绩由作业成绩占20%、三次测验占80%构成。得分标准为:总评80分以上A,70~79分为B,55~69分为C,低于55分为不及格。
(2)实验课程
MIT材料系内有2门必修的实验课程,即材料实验和材料综合实验。这两门课程同时还是加强专业交流能力培养的课程,所以,教学过程特别注意专业交流方面(包括论文写作、口头技术报告等)的形式要求。材料实验与材料科学与工程课程同时选修,在2年级第一学期进行。材料综合实验课(MaterialsProjectLaboratory)基本上就是几个同学合作的科研项目,在3年级下学期进行。下面以二年级的材料实验为例,介绍其教学和考评办法。
如前所述,材料实验共4个实验周,实验周没有其他专业课。实验内容包括量子力学原理演示、热力学和结构,同时囊括了几乎全部现代材料分析研究方法(XRD、SEM/AFM、DSC、光散射等),并通过口头和书面方式加强交流能力培养。从教学内容看,这门实验课承担了教授材料研究方法的任务。
一般将50个左右学生(2011年的2年级学生只有43人)分成6个组。每个实验周有3个实验主题,每个主题下面2个实验,2个组共选一个主题,每组选做其中一个实验。6个实验同时进行。一周3次实验,每次4小时。因此,每个组每周只做3个实验(每个主题做1个实验),共12个实验。由于每个组只做了一半的实验,对另一半实验的了解,通过每周2次的1小时交流课程(recitationsections,一般隔天举行)来实现。交流课上,大家各自在黑板上即兴介绍实验的发现,回答教师和同学的提问。
该实验课由3个教授上,其中一个总负责。课程成绩评分标准
二、分析和讨论
1.关于必修课和选修课
系内必修课程除毕业论文或企业实习外,共有10门。大学一般要求的17门课,理论上可以自由选择,但从表1系内课程的先修课程可以看出,微积分I和II,物理I和II是需要先修的,大学一般要求的6门自然科学课程就去掉了4门,能够自由选择的大学自然科学课程剩下2门。从系里建议的选课表(roadmap)可以看到,另外2门自然科学是化学和生物。所以,自然科学的必修课程实际上相当于14门。
限选课程要求包括GIR类型2门和48学分的系内选修课。有3门系内课程(共39个学分)可以作为GIR课程来选,但不能同时作为系内课程要求的学分。大多数系内选修课程的学分为12分,这样的话,系内限选课48学分需要选读4门。所以,每个学生可以有6门专业选修课程。有意思的是,在表1中只有21门限选课程,而该系主要的研究领域(或者说相当于我们的专业方向)有4个,平均每个方向只有5.25门课。如果去掉2011―2012年新增的2门课程,过去几年只有19门课,平均每个方向只有4.75门课程。看来,MIT材料科学与工程专业的课程设置,并不鼓励学生选单一专业方向的课程。实际上,在以前分专业方向限制选修课时,每个专业方向仅仅提供2~3门课程,进一步的分析见下文。
反观我们的培养计划,我们的专业方向必修课程有5门(14学分),选修课程应选4门(8学分),合计9门课程22学分。因为我们的学分是按照每周上课学时数计算的。如果按照MIT的学分计算方法,学分约为每周上课学时数的3~4倍,考虑到我们的上课周数为17~18周,而MIT才14周,因此,我们的专业方向应选学分至少相当于MIT的88学分,比其4门课程(48学分)的要求多了5门课程(40学分)。可见,我们的培养计划更加注重学生专业方向知识和技能的培养。
另外,MIT材料科学与工程系的研究领域非常广泛,关于其主要研究领域的介绍出现在3个网页上。其一是在该系的学位要求中关于限选课程的介绍网页,4个主要的研究领域分别是生物与聚合物材料、电子材料、结构与环境材料、基础与计算材料科学。其二是在MIT的招生网页,4个主要的研究领域分别是:半导体材料和低维系统(Semiconductormaterialsandlow-dimensionalsystems)、能源材料(MaterialsforEnergy)、纳米结构材料(Nanostructures)、材料的生物工程(BioengineeringofMaterials)。在介绍全体教师(Faculty)的网页,列出了30个研究方向(discipline),共122人次(有重复计算,因为实际教师只有35人),平均每个研究方向4.07人次(或1.17人)。少的方向仅1人如微技术、半导体,最多的是纳米技术,23人次。上面列出的生物工程(包括生物物理和生物技术)9人次,能源材料(包括能源与环境、储能)9人次。人数比较多的研究方向还有结构与环境材料9人次,高分子材料7人次,电、光和磁材料7人次。
可见,尽管MIT研究的材料类型很多,但其本科生培养计划中,涉及具体材料类别方向的课程特别少。
2.关于考核与成绩
MIT很多课程的成绩评定都包括平时作业和出勤与课堂参与情况。有的课程,考试以外的项目在成绩评定中所占份额可达到50%,有的实验课程则更是高达85%这在一定程度上反映了MIT对大学生平时学习的管理是非常严格的,与我们头脑中关于国外大学生“自由”学习的图像截然不同。
3.关于选课进度安排
MIT材料系没有规定统一的选课进度表。但从其推荐的选课安排(roadmap)看,具有如下特点:
(1)8门大学一般要求的社科课程(GIR)分布在8个学期选修,即每学期选修1门社科课程;
(2)一年级把大学要求的6门自然科学课程(GIR)学完,包括数学、物理和化学。
(3)二年级起全面进入专业学习。第一学期学习材料科学与工程基础、材料实验2门课程,两门课交叉进行,实验周不上课。上课周每天都有材料科学与工程基础课,实验周每天都有实验或交流,学习安排非常集中。
(4)每学期的课程一般为4门,其中1门为社科课程。
MIT二年级第1学期就学习专业基础课程,这比我们的教学计划提前很多。国内的教学计划进度安排曾经强调,前两年不安排专业课,以至于我们的材料科学与工程课程被安排在第5学期,材料研究方法更是被安排在第6学期,使得高年级学习特别紧张,深入接触专业知识和方法的时间被推迟。
4.关于培养计划的修订
从网页上能够追溯到MIT材料系1998年的培养计划,其培养计划在2003年做了很大的调整。两者的比较
这两个培养计划的最大差别在必修课,课程名称几乎完全变了。但对比课程名称和教学内容可以发现,新培养计划中的“材料科学与工程基础”包含结构与化学键、热力学与统计力学两大部分内容,分别由两位教授讲授,似乎代替了原来的“材料热力学”、“材料物理化学”和“材料化学物理”3门课程,因为其教材之一仍然是物理化学(Engel,T.,andP.Reid.PhysicalChemistry.SanFrancisco,CA:BenjaminCummings,2005.ISBN:9780805338423)。“材料实验”应该与原先的“材料结构实验”对应,“材料综合实验”应该与原来的“材料加工实验”对应。“材料的微结构演变”与原来的“材料结构”相似。取消了“材料力学”、“材料工程中的输运现象”2门课程。增加了“材料的电光磁性能”、“材料的力学性质”、“有机和生物材料化学”、“材料加工”4门课程。取消2门,合并2门,增加4门,课程总数不变。
选修课变化较小,只是增加了若干课程,特别是生物材料和纳米材料的课程。其实,两门生物材料课程是2000年增加的,当时选修课由4方向增加为5个方向。选修课的最大变化是理论上不再分专业方向,学生可以任意选课。但实际操作时,仍然向学生推荐各专业方向的课程组合。无论如何,每个专业方向的课程不足4门,学生必然需要选修其他方向的课程。
从2003年至今,必修课没有变化,选修课则有一些小的调整(表5)。其中2005年减少了高分子化学、化学冶金学(ChemicalMetallurgy)2门课程。增加了2门数学,材料热力学(原来的必修课),先进材料加工,衍射和结构,材料的对称性、结构和张量性质,材料选择,共7门课程。可见,增加的这些课程仍然是与具体材料种类无关的。2007年和2011年分别增加了1门生物材料方面的课程。可见,即使是选修课的调整,仍然在继续加强有关材料行为特征方面的课程,减少有关具体材料种类的课程。
5.关于培养目标与课程设置
过去,MIT材料科学与工程系培养目标分四类,研究型学位(Course3)、预科型学位(Course3A)、实践型学位(Course3B,2003年取消)和考古型学位(Course3C)。其中,研究型学位与实践型学位培养要求的唯一差别是不变的,即前者在四年级做毕业论文,后者在二年级暑假和三年级暑假做2个20周的企业实习,其他课程要求完全相同。现在把实践型学位取消了,但仍然保留了学生向这个方向发展的渠道,即学生仍然可以选择做毕业论文或者企业实习,学位合并在研究型学位(Course3)中。
从2003年培养计划大调整来看,MIT材料科学与工程专业(Course3)的主要培养目标是让本科毕业生继续深造。也可能是社会需求的变化促使MIT对培养计划进行调整。这从MIT选读实践型学位人数变迁或许可以看出一些端倪(表6)。从1998年到2002年,实践型学位人数多于研究型学位的人数,2002年突然降低,与研究型学位相当。查看大学2年级实践型学位学生注册数,从2002年起突然减少,由原来每年约20人突然减少为6人。2003年培养计划调整当年,还有5人注册为实践型学位,这应该是此前培养计划延续所致。
那么,没有了实践型(Course3B)学位,是否还有学生仍然会选择实习代替论文呢。下面从2002~2008年MIT材料系本科毕业生去向分析。除了一些研究生院,网页一共列出了38家企业和17家政府部门或咨询机构。统计2002年以后(至2005年结束,当年仅剩下1人)各年4年级实践型学位人数(也约等于当年毕业人数)总和恰为38人,与毕业生去向统计的企业单位数刚好相同。这难道是巧合?是否可以推论,2003培养计划修改之后几乎就没有学生选择去企业实习了?
MIT材料专业取消实践型学位,以及此后可能几乎没有人选择实习代替毕业论文事实,一方面可能与美国产业向国外转移,本国企业对工程师的需求减少有关;另一方面,MIT培养计划中的课程设置调整也起了一定作用。因为选择实践型学位人数锐减在前(2002年),培养计划调整在后(2003年)。培养计划中去掉的必修课“材料力学”和“材料工程中的输运现象”,显然属于工程类课程。因此,其培养计划课程中增加材料研究型基础知识、减少工程知识的倾向十分明显,也说明其培养计划随社会需求进行了及时调整。
另外,尽管2003年培养计划中的必修课有较大调整,但选修课调整比较有限。而且调整前后,没有改变其材料类本科生宽专业培养的模式。
但在选修课中,把专业方向的基础课程去掉,仍然让人有点匪夷所思。例如,高分子化学在高分子材料领域历来就被认为是专业基础课。MIT在2005年却把这门课从本科生培养计划中去掉了。查看其高分子方向研究生培养计划核心课程,可以看到高分子物理化学、高分子合成、高分子合成化学等基础课程。可见,MIT把专业方向的一些基础知识培养放在了研究生阶段。
以上似乎给人这样的印象,如果不继续读研究生,则专业方向的基础知识是不太够的,无形中将人才培养的周期拉长到研究生阶段了。但从我自己教学的经验来看,学习高分子物理就可以了解高分子材料的行为和特征,未必需要清楚地知道高分子材料的合成与制备方法。我的一些研究生以前从未学习高分子方面的课程,为了让他们在研究中能够理解和使用高分子材料,我就是先给他们讲授高分子物理的基本知识。
另外,注意到MIT材料专业研究生数量是本科生数量的2.2倍,有很多研究生来自校外,特别是来自国外。所以,MIT材料专业培养计划中对专业方向选修课程的调整,结合研究生阶段的课程安排,既考虑到了本科宽专业基础的培养模式,又打通了本科生培养与研究生培养之间的关联,在研究生阶段加强专业方向基础知识的培养,也便于接受其他教育背景的学生来读研究生,还是十分合理的。
MIT材料专业的本科培养计划,不断强化了按照材料大类进行培养的模式,必修课和选修课都加强了材料基本行为知识的课程,减弱了材料类别基础知识的课程,把后者移到研究生教育阶段。这说明国外关于“材料研究依据其行为和特征,而不是依据材料类型来进行”的认识形成30多年以来,不仅没有改变,还在进一步加强。MIT在2003年对培养计划大调整时,加强了材料研究基础知识课程,减少了工程类课程,其本科生的主要去向是进一步深造,直接到企业就业的比例急剧减少。本科生阶段加强研究基础知识课程,把专业方向基础知识培养放在研究生阶段,加强了研究生的知识培养,可能是其材料研究能够长期在美国名列前茅的原因之一。
[关键词]研究性学习实践;创新能力;人才培养
[中图分类号]G420[文献标识码]A[文章编号]1674-893X(2012)01−0003−04
发展新材料、新产品、新工艺、新技术、新装备,全面提高技术和装备水平,全面提高产品质量,发展名牌战略,合理利用资源和保护环境的关键是培养和造就一大批现代化的创新创业型人才。中南大学根据社会需求、学科发展、专业布局特色,结合“大材料学科研究性学习和创新能力培养的研究与实践”国家重点教改项目,提出“资源-冶金-材料-应用”的链式大材料学科理念和以此为背景的人才培养模式的改革。依托深厚的校园文化积淀营造出一种注重过程、宽容失败、敢为人先、勇于探索的校园文化氛围,建设了一支促进研究性学习的创新型师资队伍,形成了与之相适应的研究性学习过程管理机制和鼓励探索实践的保障机制。以资源共享为出发点,立足学科群体优势,构筑起一个跨学科的大材料本科人才成长与科学研究相互促进的开放式综合平台,实施连续一贯的研究思维熏陶,推进层次递进的科研实践过程,创建了以“学科文化-创新实践-制度保障”的“三位一体”的立体化实践训练体系,提出了“三导—三练—三动”的研究性学习模式,形成了以大学科为基础的大学生研究性学习和创新能力的培养新体系,并进行了实践。通过不断交叉发展和共享建设,大材料学科群现已建成7门国家精品课程,6门省级精品课程,2门国家双语教学示范课程,1个国家人才培养模式创新实验区,1个部级实验教学示范中心,1个部级教学团队,1个省级实践教学示范中心,2个国家人才培养特色专业,1位国家教学名师,1位省级教学名师,1个国家教学团队。2005~2010年间,大学科的本科生公开发表科研论文368篇,获国家和省级挑战杯大学生课外科技作品和创新创业竞赛9项,“升华杯”创业计划竞赛及科技作品竞赛50项,数学建模和大学生英语等各种学科竞赛国家国际级44人次,省级16人次项,参与申请专利12项。
一、立足共享,凸显优势,树立“资源-冶金-材料-应用”的大学科理念
人类社会不断发展,自然资源不断消耗,节约资源和保护环境成为社会可持续发展的必然条件,建设“资源节约型”和“环境友好型”社会是人类社会进步的必然趋势。与资源紧密相关的材料学科应该结合资源、提取、应用来统筹发展,与相关学科更广泛的交叉融合。发展中的材料学科,要求的人才应具备深厚的和宽广的知识储备、强大的工程实践与设计和创新能力、宽广的国际化视野、强烈的资源观和环保意识、科学的思辨方式,因此,需要在更大的学科背景下、开放的学习环境中,采用科学和个性化的培育模式。
中南大学拥有从资源到制备加工等完整的优势学科体系,学科内涵关联递进,经50多年的互相促进、共同发展和融合,形成了具有中南大学特色的大材料学科群。该学科群拥有5个国家重点学科、4个国家重点(工程、国防)实验室和国家工程研究中心、3个教育部重点实验室(工程中心)、2个国家创新群体,以此为基础,形成了大学生创新创业实训平台。作为首席科学家单位,学科群联合承担了6项“973”重大基础性研究项目,促进了教学与科研的良性互动,打破了教学与科研的条块分割局面,将科研与教学紧密地结合起来,实现科研反哺教学、带动教学的新风气。以大学科为背景,构筑互为交叉的学科基础,建立大的教育与训练平台,通过大师的引导和大项目的支撑,将学习自交给学生,以多元多向的交流与互动,培养具有大视野、大思维、探索精神和创新能力的大材料类杰出人才。在大学科理念指导下,以“资源-冶金-材料-应用”为主线,对“矿物加工工程”“有色金属冶金”“材料物理与化学”“材料学”“材料加工工程”等5个国家重点学科进行整体规划、设计,结合课程体系、实践实训、拓展训练、综合素质、非智力因素等,开展多方位的创新人才培养模式的创新与改革,培养视野开阔、基础宽厚、个性鲜明、乐于探索、勇于创新,具有资源节约、环境友好、团队协作意识的大材料创新人才。
二、宽容失败,鼓励探索,营造“敢为人先,勇于创新”的人才成长氛围
大材料学科群拥有8位院士、109位博导、156位教授的强大师资队伍和大量国家及省部级教学、科研成果,对学生有极大的示范作用。实施本科生学业成长导师制,引导学生尽早接触专业信息和了解学科前沿,更好融入学术团队和培养探索精神,帮助学生建立学业规划和选择专业及课程,使学生从入学起就有引导、有指导、有鼓励、有关注,减少盲目性,提高适应性,促进素质养成。近年来,学校积极营造鼓励创新的校园文化,培养学生勇于探索、敢为人先、不怕失败的拼搏精神,为创新创业型人才培养打造坚实的湖湘文化精神基础,发挥学生社区、学生公寓、网络虚拟群体等在校园文化建设中的作用,营造“心忧天下、敢为人先、乐于探索、勇于创新”的学科人文精神,形成极具感染的学科文化魅力和促进研究性学习的人才成长氛围。
树立“参与过程的成长即成果”的理念,开展特色品牌活动,营造敢于钻研勇于探索的学术和创新氛围,重视实践、实训,强调过程参与,容许失败。通过读书活动、知识竞赛、名家论坛、开放论坛、网上论坛等,利用教学和研究成果展示和交流平台,形成开明、活泼、合理、自由、民主的学术环境。通过院士及大师上讲台,开设学科前沿、尖端技术和科学研究方法等课程和讲座,拓宽学生视野,激发研究兴趣。通过多渠道、多形式的研究和实践活动,引领学生“以探索为乐、以求知为乐,以创新为乐”,培养学生的首创精神与创业素质。
利用第二课堂和社会教育资源,开展主题教育活动,加强德育和素质教育,增强社会责任意识。依托团中央委托学校建设的“中国大学生心理健康教育在线”等10余个网站开展多主题网上交流和教育活动,充分利用高校网络德育系统和德育示范基地开展有效的德育工作。大力扶持和鼓励学术科技创新型社团和兴趣爱好型社团。确立“服务社会、增强责任、全面发展”的主题思想,实施“大学生素质拓展计划”,开展以“三下乡”和“四进社区”为主要形式的多种多样的学生社会实践活动,设立专项经费,建立考核制度,对学生参与社会实践进行量与质的考核。
将体验多种学习经历、感受不同文化氛围作为本科生研究性学习的一种手段。针对材料学科不断与相关学科的渗透与交叉的特点,利用学科门类多、学科性公司多以及国际交往频繁的优势,对学生提出了体验不同学习经历、感受不同文化氛围的要求,采取多种方式和途径,开阔学生的国际化视野、产学研早期结合感受创新氛围、企业公司顶岗历练体验创业过程。通过校际、国际交流、聘请国外教师等多种形式,使学生感受不同文化、领略不同思维特征。三年来,已选派200多名学生赴美国普度大学、英国伯明翰大学、澳大利亚蒙纳士大学、里兹大学、芬兰罗瓦涅米技术学院、挪威科技大学进行学习,每学年邀请国外专家到大材料学科开办讲座超过50次。根据课题情况,鼓励学生到学科性公司实习或勤工俭学,以增强学生在不同研究群体的经历。鼓励学生辅修管理或经济类的课程,鼓励学生通过网络学习国外学校的课程,通过多种方式让学生体验更大范围的学科背景、文化蕴含和教育特点。
三、注重过程,激励创新,建立“认识—探索—创新”的研究性学习体系
研究性学习具有内容的开放性,过程的自主性,方式的多元性等特点。中南大学依据自身的特色和培养理念,以强化探索实践和提高创新能力为目标,以营造氛围和提供手段为途径,以个性化培养和团队精神为内涵,以兴趣驱动和参与体验为基调,以自主选题和自行实验为核心,提出了“名家引导、问题引导、课题引导”“思辨训练、探究训练、拓展训练”“兴趣驱动、研讨促动、多元互动”的“三导—三练—三动”研究性学习模式。通过名家引领、课题导入、问题探索和课题解析,激发本科生学习兴趣和探索精神,以参与科学研究为切入点,进行思维、认知、分析、辩识能力的训练。在大学科背景中,进行贯通式的拓展训练,在实际创新创业环境中,进行多层次的探究训练。通过自主选择专业、课程、教师和课题,形成学习的兴趣驱动力,通过各种类型的学术活动和社团活动,进行不同主题的研讨,达到多元互动和学术提升。与此同时,不断完善“重参与、重过程、重成长”的评价制度,改变以往重分数、重结果的评价方法,以实践训练、思维拓展、了解社会和奉献社会为导向,建立注重过程的学习实践评价体系,突出“过程完整、时间保证、训练系统”,强调参与、重视程序、强化过程、淡化结果、激励创新。
以“循序渐进提高基本能力、引导求知激发探索兴趣、成果转化及应用激励实战体验”为出发点,构筑“层次递进的训练平台、激发兴趣的探索平台、拓展能力的实战平台”三大功能互补的实践平台。利用中南大学大材料学科群的资源优势和学科建设的优势,整合国家和部省级重点实验室资源和学科性公司的资源,构筑培养学生基本素质的训练平台和进行科研开发和创新创业实战训练的平台,为学生提供研究、设计、模拟、创造和实训的自由探索空间,把学生直接置于科研开发-成果转化-企业管理-市场营销的创新创业环境中,通过“教科产”的有机结合,使教育与科技活动和社会经济发展的现实需求紧密结合。
利用“训练—探索—实战”贯通式条件保障,进行“认识—实践—创新”层次递进的训练。发挥大材料学科的整合优势,建立实训平台全面开放制度,设立创新基金,推动教学资源开放共享,实现实践平台的高效利用。三年来,大材料学科先后投入8000万元用于实验室建设,以学科群为整体统筹规划,将平台按功能划分为相应的功能区,拥有的5000余台套设备均向本科生开放,保障了研究性学习和探索实践,每学年约4000大材料学科学生受益于资源的开放共享。大学科群共有的探索平台,为建立四年不断线的必修实践课程体系和层次递进的基本能力养成实践体系提供了资源保障。低年级采用引导型训练模式,开设新生课程,通过研讨式教学使学生了解所从事领域的概念、前沿、进展以及研究方法等,激发学生的求知欲望。高年级采用研究型训练模式,邀请行业知名专家开设“企业案例分析”等课程,综合了解行业的技术发展现状,结合承担的国家及省部科研课题进行科研探索和完成毕业论文(设计),着重训练学生综合运用所学相关知识,提出问题、分析和解决问题的能力,实现理论与实践的有机结合,培养学生创新意识及实践能力。
以“大学科—教学学院—指导教师—实践项目”为主线,建立大材料学科开展研究性学习的长效机制。一是成立大材料学科创新人才培养领导小组和专家顾问组,负责建章立制和组织协调,旨在加强大材料学科群中各学科间的交流与合作,深化教学改革,加强平台建设,提高培养质量等。二是建立大学科开展研究性学习的组织机构,鼓励跨学科组成团队,组织跨学科探索研究,以项目组为研究核心,各学院成立执行指导小组,负责指导和实施研究性学习。三是成立大学生创新创业教育中心,建立大学生创新创业的项目制度,结合国家和社会在学校设立的项目,建立国家、企业、学校、学院四级创新创业资助体系,形成创新实践、创业实践、社会调查、科学研究四种创新创业实践类型。四是开放教师科研课题,联合大材料学科群各课题组,设立面向本科生的勤工俭学岗位,提供更多的参加科研和生产的机会。五是利用学科性公司作为学生产学研早期结合的主要载体,吸纳本科生参与科研活动,将单一封闭的学校教育置于开放环境之中,使教学内涵、手段直接与现代生产相匹配,形成动态的、开放的、与现场同步的创新能力培养的平台。六是通过“双参三联合”,“定单式培养”等方式,使企业参与学生培养的全过程,学生提早参加企业的相关研发活动。通过课题组与学生双向选择、学生交叉组队自主立项等措施,形成了各种参与科研的形式和多样化的研究性学习团队,实现科学研究与学生培养的有机结合。
学生可以通过不同的途径参入科研活动。一是学校顶层设计自由探索项目,供学生选择,通过答辩,确定是否立项资助;二是学生提出研究计划,自组研究团队,经学校或学院评审后给予立项资助;三是通过双向选择以助研形式参与老师的课题。三年来,大材料学科提供514项科研课题供学生开放研修,近700名学生获得了“中南大学本科生自由探索计划项目”“大学生创新教育行动计划”“大学生创新创业启航行动计划”“米塔尔创新创业奖”立项资助计划的支持,每年约有750名学生通过自愿选择参与科研,300人次学生参与交叉科研课题的研究,C/C复合材料、生物冶金、高性能铝合金、铜合金和镁合金等国家重大项目吸纳了200多名本科生参与研究。
四、和而不同,彰显特色,有效实施大材料学科创新人才培养方案
根据大材料人才观的理念,贯彻“和而不同,彰显特色”的思路,以资源-冶金-材料-应用为学科主线,按照“卓越性、创新性、个性化、国际化”的原则,构建大材料学科的柔性培养方案。新培养方案设置通式教育、学科教育、专业教育和个性培养四类课程平台,压缩总学分的同时将选修课比例提高到35%左右、实践环节学分达到30%以上,设置了8学分以上的课外研学学分。大材料学科内各专业课程对大材料学科的学生100%开放选修,保障大材料学科各专业的交叉融合,促进学生知识、能力、素质协调发展。
以“促进开放选学、交叉学科基础、突出专业特色、贯通素质养成”为目标,构筑融合大材料特色的弹性课程体系。大材料学科低年级各专业的学生有相同的学科基础课,一年级课程全部打通,高年级学生有各具特色的专业课,针对大学科群的发展开设前沿讲座课和专题讲座课、学术研讨等。通过“开放实验、开放课程、开放课题”的三开放促进研究性学习,使学生在开放选学中强化学科基础和深化专业知识,在交叉选修中拓宽视野和养成素质。
在校期间,学生有2次跨大类和大类内选专业的机会,还有3次自主选择教学进程、学习课程和授课老师、毕业出口的专业方向的机会,最大限度把学习的自交给学生。鼓励学生在大学科跨专业选修课程和开展探索实践,修满其他专业10个必修课学分和10个选修课学分可以获得相应专业的辅修证书,修满50个其他专业的学分(包括必修课和选修课)可以获得双学位。为满足学生对学习的更高层次的需求,采取成立教改班小班上课和采取一对一指导的方式,进行因材施教和大信息量教学,加深基础课程和加大选修门类。经1~2年的集中强化基础后,在导师指导下逐步进入相应的研究团队,在学习中探究,在探究中学习,强化其科研能力和创新能力。
通过开展大学科为背景的创新人才研究性学习和创新性能力培养新模式研究与实践,在大材料学科学生中,已经形成了自觉学习、积极探索、大胆创新的研究性学习氛围。在这种氛围的熏陶下,在大材料学科的立体化实践体系的训练中,学生创新思维、实践动手、交流合作等能力不断提高。对本科生全开放的学科群“训练-探索-实战”的立体化实践平台,每年可接受约4000名学生进行不同层次的教学和科研基本能力训练、探索研究和创新创业体验。教授们的科研团队参与指导学生的创新创业活动,每年吸引大量的本科生组成研究性学习团队进行科研探索。大材料学科所有学生通过参与大型综合实验和在教师的指导下完成某个专题的研究,经历“实验方案制定-实验研究-材料制备和检测-数据分析与整理-论文撰写”等全过程实践,得到全方位训练。冶金工程专业0202班的刘芳洋同学,一年级进入理科教改班学习,二年级开始参加科研实践活动,三年级进入到刘业翔院士的科研团队开展研究训练。刘院士亲自为其制定了学习和研究计划,让其参与薄膜太阳能电池材料的开创性工作,进行实验平台的搭建和一系列探索性实验,体验从方案制定、可行性分析、设备选型论证、实验室建设等的独立工作经历。他和老师一起搭建了湖南地区第1套太阳电池光电性能测试系统,建成一套超高真空溅射与蒸发系统和用于薄膜材料电学性质测量的霍尔效应测试系统,现已发表了6篇高水平的科研论文,参加3项专利的申报。无机非金属材料工程专业0502班周立斌同学和0402班的高冠华同学,从大二开始进入国家973首席科学家邱冠周教授的科研团队中开展研究性学习,参入国家自然科学基金项目的研究,撰写出的英语论文被“JournalofPhysicalChemistryC(SCI,影响因子为4.0)”录用。郭学益教授指导的学生创新创业团队,结合湖南省的经济特色与生态问题,以“橘子油提取及应用于‘白色污染’泡沫塑料回收利用”为题进行创业设计,2006年获得湖南省第二届“挑战杯”大学生计划创业竞赛金奖和最佳创意奖、第五届“挑战杯”飞利浦中国大学生创业计划竞赛铜奖和优秀团队奖、第三届中国青年创业项目洽谈会暨科技创业成果博览会铜奖。
参考文献:
[1]宋保维,崔景元.结合学科建设和科学研究构建创新人才培养体系[J].中国高教研究,2006(1):32-33.
[2]张存库,田小平,陈梅,等.基于第二课堂建设的大学生素质教育探索与实践[J].中国高教研究,2007(10):90-91.
[3]吕改玲,蔡琼.大学的学科群建设与研究生创新人才培养[J].中国高教研究,2007(10):46-49.
[4]眭依凡.如何培养创新型人才——兼谈美国著名大学的成功经验[J].中国高教研究,2006(12):3-9.
[5]刘凡本.美国研究型大学本科教育改革透视[J].2002年“全球化教育改革”专刊.
[6]钟梅,周杭霞.英国密德萨斯大学的团体协作能力培养[J].高等工程教育研究,2005(2):94-96.
[7]崔改梅.研究性学习:培养学生创新能力的实战平台[J].教育探索,2006(11):28-29.
[8]陈分雄,叶敦范,杜鹏辉.创新型人才培养与本科生科研活动[J].理工高教研究,2005,24(3):29-31.
关键词:中药制剂工艺存在问题解决方案
中药制剂在正式投入市场前,应该接受科学系统的工艺研究,确保其优质性与稳定性,最大程度避免出现药物安全问题,保障患者的生命安全。尽管制药工艺在随着科技的进步而不断发展,但我国中药制剂工艺研究中仍旧存在许多问题,严重制约了中药制剂工艺的进一步发展。如何有效提升中药制剂工艺的安全性、规范制剂检测流程成为了相关部门探讨的重点问题。
一、当前我国中药制剂工艺中存在的问题
(一)中药制剂工艺注册资料缺乏完整性
当前部分新型中药制剂申报资料过于简单,仅仅只记录了基本的工艺流程,缺乏新药生产设备、配套设施的性能指标参数与实用工艺类型,资料的完整性较差,为后续工作的顺利实施造成了阻碍。新型中药制剂注册资料缺乏必要的完整性,制约了评判人员对该种药剂实际质量的测定,对研究结果的准确性、有效性造成影响。
(二)中药制剂工艺缺乏科学合理性
新型中药制剂的一般检验流程是先通过实验室研究,然后通过中试研究,以此确保新药的安全有效性。当前部分药品生产企业为了节省成本以实现经济效益最大化,不按照行业规范进行中试研究或直接忽视中试研究对药品安全的重要性,大大提升了药品安全事故的发生几率,为患者的生命健康安全埋下了隐患。
(三)研究制剂工艺时所用的药材质量与实际生产不符
部分制药企业在为了能一次性通过新药注册,采用投机取巧的方法,在工艺研究时故意选用优质药材生产检测样品,而真正用于大型生产中的药材仅为达标药材或次等药材。制药企业的这种行为不仅会影响到药品的实际有效成分保留率,限制药品临床治疗效果,还有可能造成安全事故,阻碍企业的进一步发展。
(四)忽视对原药材前处理研究
原药材的前处理研究是中药制剂工艺研究的重要环节,在实际的操作过程中,这一关键步骤常常被制药部门遗忘或刻意忽略。根据《中国药典》明文记载可知,中药制剂所列举的处方中涉及到的所以药材皆为净药材,除去另有炮制要求的药材外,都应该参照药典记载的方法进行炮制
(五)辅料选用研究不足
赋形剂是药物辅料的一种,能赋予药剂一定的形态,使其维持必要的药性结构。附加剂是药物辅料的另一组成部分,主要用于稳定药性、确保成品药物质量达标。当前我国中药制剂过程中过于重视主药,严重忽略辅料对药品的积极影响,使得部分制药企业在辅料选择时随意性过大,没有结合药品的实际情况,将主药药性考虑到辅料选择中,使得药品外观、药性、酸碱度、澄澈度等受到不同程度的影响。还有部分企业胡乱添加删改药物辅料,操作过程缺乏必要的科学合理性,为成品药剂埋下了安全隐患。
二、解决中药制剂工艺问题的有效对策
(一)进一步提升中药制剂工艺申报资料的完整性
规范完整的中药制剂工艺研究(结构图如图一所示)要先对处方药材实行基源鉴定,并用《中国药典》中提及的规范炮制方法进行前处理研究,接着利用均匀试验的方式进一步开展提取工艺技术条件的研究,还要根据新型药物的实际情况选择合适的分离、提纯、干燥方法,通过深入分析药品提取物中药品有效成分保留率测评制剂工艺的有效性与可行性。除此之外,中药制剂工艺研究还要根据药剂提取物的药性、实际临床需求等因素确定辅料的类型、用量等信息,完成中药制剂成型研究。最后还不能忘记最易忽略的中试研究环节,核实检测实验室研究的参数是否符合实际的生产数据要求,为中药制剂质量安全提供保障。
图一.完整的中药制剂工艺研究构成要素
(二)进一步加强中试研究科学合理性审查
由于实验室研究规模较小、可提供的专业设备较少,只能进行手工或半手工操作,检测效果不及中试研究准确,与药品的实际生产有着较大出入。若是制药企业直接略去中试研究环节,仅仅以实验室研究取得的数据为药品正式生产参考标准,极有可能因违反原定工艺出现药品实际生产质量与设计检测质量不一致等情况,对制药企业造成较大损失。为了进一步规范中试研究的过程,制药企业的相关部门要在制定生产工艺再现复核机制的基础上,利用生产制药设备连续生产三个批次的新药样品,并依次归为三大类:最大量、最小量与常规量,以此检验该新药制剂工艺标准的实用性与耐用性,将技术参数控制在一个科学合理的范围内,为确保新药质量安全打下坚实的基础。
(三)进一步规范药材浸出物检测标准
药材实际有用成分获取率、保留率与浸膏固含率三大因素是影响中药制剂疗效与成品形态的关键。一般来说,这三大因素变动性较强,会因为药材种植地区、采集季节、储存效果等条件的变化而变化。制药企业的检测部门在进行质量测评时,要加强对新药浸出物的测评力度,严格控制药品内杂志含量,确保药物成品的安全性、有效性。
(四)重视对原药材前处理环节研究
制药企业要加强对原药材前处理环节的重视程度,通过规范前处理操作流程、制定操作技术参数、严把净药材质量关,将所有的药材按照《中国药典》提及的炮制方法处理。将药材按药性、种类、名贵程度分门别类,充分考虑到各个药材的特点,采用不同的粉碎切割方法完成前处理工作。
(五)加强对辅料选用的研究认识
制药企业要正视辅料对药品的积极影响,在选用辅料时充分考虑到主药药性,按照标准用量添加辅料,使药品的外观、药性、酸碱度与澄澈度等均达到最佳状态,进一步确保药物成品的安全性与稳定性。
三、结语
综上所述,当前我国的中药制剂工艺研究中仍存在各种突出问题,严重制约着制约企业的发展,威胁着广大患者的健康与生命安全,要想进一步规范制药工艺研究,就必须提升中药制剂工艺申报资料的完整性,加强中试研究的科学合理性审查力度,进一步规范药材浸出物检测标准,重视对原药材前处理环节研究,加强对辅料选用的研究认识,以此促进中药制药行业进一步发展壮大。
参考文献:
[1]杜若飞,洪燕龙,鲜洁晨.关于构建中药制剂工艺设计专家系统的思考[J].世界科学技术-中医药现代化,2013(01)
[2]庞楠楠,廖一平,刘虎威.LC-MS及CE-MS技术在中药分析中的应用[J].中国科技论文在线,2009(03)
【关键词】材料物理教学改革人才培养
【基金项目】湖北省教育厅教学研究项目(编号:2011276,2012288)。
Abstract:Inrecentyears,withthegradualincreaseofthenationalinvestmentinnewenergy,newmaterials,andoptoelectronicinformationindustry,thedemandsofsocialengineeringcapabilities,aswellasbusinesslevelofmaterialsphysicsgraduatesincreaseaccordingly.It?蒺simperativetoreformtheexistingteachingsystemofmaterialsphysics.Inthiswork,thereformofteachingsystemofmaterialsphysicswasdiscussedfromfouraspectsofteachingphilosophy,curriculumdevelopment,teachingpractice,andfacultydevelopment.Inaddition,somesuggestionsonhowtotrainmoreprofessionalmaterialsphysicsgraduatesweregiven.
Keywords:materialsphysics;teachingreform;personneltraining
【中图分类号】G642.0【文献标识码】A【文章编号】2095-3089(2013)06-0170-02
材料物理专业属于材料科学类,其培养目标是培养较系统的掌握材料科学的基本理论与技术,具备材料物理相关基本知识和基本技能,能在与材料科学与工程相关的领域从事研究、教学、科技开发及相关管理工作的材料物理高级专门人才[1]。随着科学技术的不断发展,社会对材料物理专业人才的需求情况也在逐渐发生变化。近几年国家在新能源、新材料以及光电信息领域投入的不断加大,使得企业对于材料物理专业毕业生的需求数量也在逐年增加,特别是对于具有较强专业基础和实践能力的人才的需求,是很多高新技术企业每年人才发展计划的重点。
材料物理是物理学与材料科学的一个交叉学科,主要通过各种物理技术和物理效应,实现材料的合成、制备、加工、修饰与应用。主要研究范围包括材料的合成、结构、性质与应用;新型材料的设计以及材料的计算机模拟等。随着国家对本专业人才需求的变化,对本专业的教学体系进行一定的改革迫在眉睫。本文以武汉工程大学材料物理专业的发展为出发点,分别从教学理念、课程建设、教学实践以及师资队伍建设四个方面入手,详细探讨了本专业在新形势下进行教学改革的一些措施。
一、教学理念的更新
面向未来的教学改革需要现代化的教学思想,需要前瞻性的教学理念[2]。这些教学理念包括从专业教育向综合素质教育,从重知识传授向能力培养转变;从封闭式的学校教育模式向开放型的产、学、研三结合的教育模式转变;从标准化培养模式向个性化、选择性培养模式转变;从维持性学习向创新性学习转变[3]。
武汉工程大学材料物理专业所属学科为省级重点学科及湖北省首批优势特色学科,本专业依托自身的学科优势和人才优势,将专业人才培养特色定位于低温等离子体技术及应用和功能薄膜材料的开发,重点培养在光电信息材料、新能源材料、环境材料等方面具有扎实的基础理论知识和实践能力的应用型创新人才。
为适应新时期国家建设对材料物理专业人才需求的变化,在对本专业人才的需求情况以及人才市场走向等问题进行充分调查论证的基础上,明确了我校材料物理专业的培养目标,即在专业设置和课程体系设计上尽量体现“拓宽专业面、夯实基础、重视能力培养”的指导思想,着力培养学生的创新能力,真正提高本科生的素质教育。同时,我们也注意到现实的就业压力对学生的影响,在打好基础,增强适应性的同时,设置功能薄膜材料和等离子体技术2个专业方向,提供了更多的课程、丰富了教学内容,扩大了学生的选择空间,满足学生多样化的需求,进一步体现了因材施教的思想;同时也体现我校等离子体学科及薄膜材料研究方面的特色。
新的教学方案力求将全面素质教育的精神渗透到专业教育之中,使基础知识教育、能力训练和素质培养结合起来,对学生进行较为系统的基本知识和基本理论的教学,加强对学生基本方法和技能的训练,重视对学生创造能力和创新意识的培养。
二、课程建设的优化
在不同的社会需求下,根据社会对毕业生需求的调研及预测对材料物理专业的课程体系进行适当的修订,突出本专业在不同时期的重点,对于培养满足社会需求的高水平人才十分重要[4-7]。我校材料物理专业在课程建设方面主要集中在提升现有课程和推出新课程/新内容两个方面。
在提升现有课程方面,对于本专业的一些老牌重点课程,采取主讲教师负责制,其余教师积极参与,分工合作,加强重点课程建设,并积极申报新的重点课程。经过几年建设,已在多门课程的建设方面取得了较好成果,如《材料科学基础》、《工业等离子体原理》、《薄膜材料与制备技术》等课程已建设成为校级精品课程,《纳米材料与技术》、《固体物理学》课程成为校级重点建设课程。这些重点课程的建设一方面锻炼了队伍,提高了整体素质,另一方面对其他课程的建设起到很好的示范带动作用。在重点课程建设过程中,本专业一直在积极探索课程教学改革方法,采用多媒体教学的课程由2002年的1门发展到现在所有课程都使用多媒体教学;双语教学也从无到有,《工业等离子体原理》、《薄膜材料与技术》已采用双语教学。
在推出新课程/新内容方面,本专业根据毕业生就业新形势对培养方案进行了大量修改。新的培养方案进一步体现了因材施教的思想,提供了更多的课程、丰富了教学内容,扩大了学生的选择空间;同时也体现了我校等离子体学科优势的特色。如新培养计划针对社会需求开设了《电子材料》和《工业等离子体工程》等课程,课程内容紧紧围绕目前工业生产中涉及到的新产品和新技术,有利于学生更好地完成从学校到社会的衔接。此外,现有课程的授课内容也逐步以市场为导向,在保持现有特色的同时,增加与市场需求相关联的专业知识体系,学生毕业后反响良好。
三、教学实践改革
材料物理专业的实践教学主要分为校内实践和校外实践两部分。校内实践主要是指在学校现有的实验条件下进行的一系列基础实验和专业实验,因此实验室建设也是提高实践教学质量的必要前提[8-10]。我校材料物理专业以湖北省等离子体化学与新材料重点实验室、湖北省微波等离子体技术研究工程中心和专业实验室为校内实践教学平台,在材料制备、加工,材料性能(力学、电学、磁学、热学等性质)测试、材料组织结构测定及材料应用等方面开展实验室建设,并结合本学科科研发展方向进行建设,设备采购主要围绕着材料科学基础、材料合成与加工、薄膜材料、材料表面改性、等离子体加工、纳米材料等课程进行。
在此基础上,我校材料物理专业根据学科建设发展情况,在2005年对实践教学环节进行了重大改革,将原来分散在各个课程中的实验课程进行整合,对原有实验体系进行重新规划,开设单独的实验课程,制定统一大纲,整合实验内容,并对实验内容适当更新,使实验体系更加完备,并与实用化紧密结合,侧重于培养学生动手能力。整合后的校内实验课为《材料科学基础实验》、《材料物理专业实验》以及《等离子体技术与应用实验》三门课程,总学时由原来的80个增加到108个。
同时,在实验内容上进行创新,将科研成果转化为教学内容,以科研促进教学。目前,在材料物理专业开设的3门实验课中,《材料物理专业实验》以及《等离子体技术与应用实验》全部实验均为教师科研转化而来。所有专业实验将科研与教学紧密结合,一方面弥补教学经费的不足,另一方面让学生接触科学前沿,激发从事科研工作兴趣,培养学生在从事科学研究的同时加深对课程内容的理解,提高教学效果。
此外,在校内实践教学中增设《学年论文》这一实践教学内容,让学生模拟实际科学研究,通过教师拟定方向,学生收集资料、归纳总结收集到的信息写出文献综述、然后针对发现的问题确定具体的研究题目,再制定详细的实验方案,并预测可能的结果。最后通过答辩,完成这一实践教学环节。
在校外实践教学方面,本专业设置有《毕业实习》环节,毕业实习地点的选择主要以人才市场需求为导向,目前学校已与多家从事光电信息材料、新能源材料、环境材料的企业签订实习协议,并在几家硅材料制造企业、LED制造企业及薄膜制备企业建立了实习基地,为学生的毕业实习提供了保障。此外,在指导毕业论文过程中,鼓励学生采取“宜化模式”完成毕业论文。由于“宜化模式”课题来源于企业,结合工厂实际,其研究结果更具有实用性。学生在做毕业论文过程中能够更好地将书本上的理论知识与现实的生产实际相结合,有效训练学生综合应用知识的能力。本专业近年来在学生毕业实习和毕业论文环节中有超过25%的学生采取“宜化模式”进行毕业论文。
四、加强师资队伍建设
师资队伍建设是专业建设的重要环节。为了培养出满足社会需要的高素质人才,教师的知识更新和自身素质提升十分关键[9,11]。本专业在职教师具有学历层次高、职称结构合理、平均年龄低的特点,基于这样一个教师队伍现状,材料物理专业的师资队伍建设一直坚持高标准、高水平的指导思想,在引进高水平的学术带头人、责任教授的同时,加大力度对现有的青年教师进行培养,提高他们的教学、科研水平。具体措施主要包括对青年教师进行帮扶指导,努力提高青年教师的教学技能;合理安排好现有教师的教学和科研工作,在保证教学质量的前提下,积极开展科学研究工作,通过科学研究,不断提高教师的学术素养;积极引进优秀教师,逐步建立一支高水平、稳定的教师队伍。
此外,本专业在教学过程中积极聘请相关行业的优秀工程师为学生讲授专业基础课程或进行专题报告,在此过程中让老师和学生充分了解国内外相关行业的发展动态,探讨材料物理专业今后的发展方向和毕业生应该具备的基础知识和基本技能,以此加强学生对本专业的了解,更进一步提高教学效果。
五、结语
如何培养满足新形势要求的材料物理专业高素质应用型人才,是所有高校材料物理专业教学人员需要探讨的核心问题。教学改革是一个随社会形势发展而不断进行的过程,因此,我们时刻紧跟社会发展步伐,在充分了解国家和社会对本专业人才需求的前提下不断探求新形势下的教学改革,这样才能不断为社会输出高水平的专业人才。
参考文献:
[1]中华人民共和国教育部高等教育司.普通高等学校本科专业目录和专业介绍(1998年颁布)[G].北京:高等教育出版社,1998,138.
[2]王雅珍,祖立武,张小舟,等.高分子材料与工程专业教学改革探索与实践[J].高师理科学刊,2007,27(1):61―63.
[3]天津大学材料科学与工程学院教学改革小组.面向未来的材料科学与工程专业教学改革与实践[J].高等工程教育研究,2005(增刊):24―3O.
[4]闫时建,田玉明,张敏刚,等.材料物理专业计算机操作实践课的教学改革[J].山西财经大学学报(高等教育版),2008,11(2):71―72.
[5]肖纪美.材料物理教学体会[J].北京科技大学学报,2000,22(5):389―395.
[6]石敏,陈翌庆,许育东,等.论“材料物理基础”精品课程的建设[J].合肥工业大学学报(社会科学版),2010,24(1):86―90.
[7]李艳红,,郭思辰.材料物理课程教学改革与创新能力培养研究[J].科教文汇,2008,12:182.
[8]姚婷珍,许天旱.材料物理实验教学改革初探[J].广西教育,2009,3:109―110.
[9]刘仿军,鄢国平,喻湘华,等.高分子材料与工程专业人才培养模式研究与实践[J].武汉工程大学学报,2009,31(6):88―91.