起点作文网

压力容器论文(整理2篇)

时间: 2024-11-11 栏目:办公范文

压力容器论文范文篇1

1.1压力容器概念与应用

在实际研究中,我们将反应堆压力容器概念定义为:核反应堆压力容器就是指安放核反应堆,并在核反应堆运行过程中承受压力的密闭容器。在概念中反映了反应堆的两个主要特征:既耐压性与密闭性。因为在核能源设施建设中,核反应堆在实际应用中一般包括了轻水堆、重水堆、气冷堆及快堆等几种主要类型,所以压力容器的结构形式也随着反应堆的变化而各有不同。

1.2压力容器主要设计原则

在反应堆压力容器实际的设计过程中,根据反应堆在实用中主要特征,设计者应遵循以下原则,首先是在设计中容器应位于反应堆厂房中心位置,以此为核心开展反应堆整体设计。其次是在设计时应做好紧急问题的预防与处理防范措施设计。其中主要应考虑的问题包括了以下问题:在反应堆运行过程中冷却剂遇到高压和高温问题;反应堆主管道断裂等工程事故问题;地震一类的地质灾害问题等各类问题。最后是在设计中严格制定质量与安全标准。因为核反应堆长期处于高压与危险状态。所以在压力容器设计过程中,设计者应充分的考虑其在材质、工艺、以及检查等方面的要求,在设计中严格贯彻质量与安全要求确保源头保障的完成。

2压力容器主要技术特点实践研究

在反应堆压力容器的实际工作中,我们按照其材质划分主要将其分为钢容器与预应力混凝土容器两种。研究中我们分别对于这两种容器进行研究,其主要的研究结果如下。

2.1钢压力容器主要技术特点研究

在实际的反应堆应用中,钢压力容器因其密闭与安全性特点被应用在各类核反应堆的建设过程中。下面我们依据反应堆的区别,分别对钢压力容器的设计与建设要求进行介绍。首先是轻水核反应堆中容器技术要求。在这类反应堆设计中与建设中,钢压力容器根据技术要求设计为圆筒形结构。在百万千瓦级大功率反应堆的建设中,为了实现安全与技术要求压力容器内径需要设计为4.4m,高度设计要求在13-15m之间,壁厚为20cm。同时根据设计要求,容器整体在反应堆的运行过程中所承受的压力不得小于15兆帕。为了达到设计与实际应用的要求,我们在容器应用的材料选择中,一般使用含锰、钼、镍的低合金钢为主要材料,同时在容器建设中需要在容器堆焊不锈钢材料以提高容器整体的耐腐蚀性。在反应堆容器的设计中为了方便反应堆换料等工作的进行,一般在其上封头连接中应用法兰工艺。同时在容器顶部安装设置反应堆控制棒驱动机构,便于进行操作。另外在钢容器的实际应用中,为了实现其技术设计与工艺要求,还需要设置反应堆一回路的进出口接管段。其次是沸水反应堆中压力容器的技术要求。在这类反应堆设计与建设过程中,其在外形和材质的要求中与冷水反应堆基本相同。但是也存在着以下不同之处。一是因其运行中所承受压力较低,所以其压力设计只要不低于7兆帕就可以了。二是因为沸水反应堆需要安装设置汽水分离器等主要设备,所以其设计尺寸应大于冷水反应堆,如其在百万千瓦级压力容器设计中,设计直径需要达到6.4m,设计高度需要超过22m,壁厚设计要求在15-17cm。第三是在设计中,沸水反应堆控制棒设计应实现贯通压力容器底部的设计要求。最后是气冷反应堆的技术要求。这类反应堆钢压力容器设计中一般为直径约20m圆球,同时在顶部设置安装加料立管,容器侧部设置进出口风道等设备。随着核反应堆技术的进步,气冷反应堆因为存在容积大、焊接技术要求高与整体运输难度高等特点,已逐步被混凝土压力容器代替。

2.2预应力混凝土压力容器主要技术特点研究

因为技术开发较晚与实际技术问题较多等原因,预应力混凝土压力容器现阶段主要被应用于气冷反应堆建设中。在这类反应堆容器设计中,其主要的设计要点包括了以下内容。首先是在外形与结构设计中,容器整体外形设计为直径大约25m、高度大约30m的立式圆筒。同时在设计中要求容器采用厚度为5~6m平板进行封头处理,同时容器壁厚大约在4~5m。其次是在结构设计中,设计者按照容器具体使用要求,将其结构设计为单腔与多腔式两种结构。最后是按照预应力钢束配置方式进行设计。这项设计主要是做好纵向与横向钢束的按照与设置设计,将两者很好的安全结合。在气冷反应堆实际应用中,预应力混凝土压力容器的主要优势包括了以下两点。一是采用了加多的钢束作为整体承载构件,小部分结构破坏不影响整个容器的整体结构安全,使其安全性更高。二是其主要采用建设工程现场浇筑、安装和装配建设,其安装与运输方便,适合大型核电站建设使用。

3结语

压力容器论文范文篇2

关键词:静止型动态无功补偿装置,电能质量,仿真,控制

1.银城铺变电站概况

110kV银城铺变电站现有3个电压等级,分别为110kV、35kV、10kV,现运行两台40MVA有载调压变压器。最大负荷80MW。现有35kV出线4回,现有10kV出线17回。110kV为双母线带旁路接线方式;35kV为单母线分段接线方式,10kV为单母线分段接线方式。现有10kV无功补偿装置2组,总容量为12000kVAR。短路容量:110kV最大2041MVA、最小839MVA;35kV最大573MVA、最小298MVA。

2.35kV侧电能质量数据分析

为确定MCR型SVC装置研究与应用的方案,2010年9月对银城铺35kV两段母线进行了电能质量测试。测量的指标主要为电压总谐波畸变率、电压闪变、功率因数、无功波动、电压偏差率和谐波电流。通过对实际测量数据的分析,银城铺变电站35kV的4号母线存在的主要电能质量问题为:

1)功率因数偏低,仅为0.899(不投10kV电容器时)。

2)电压总谐波畸变率超标,如下表:

3)电压闪变超标,如下表:

4)谐波以3次、5次谐波为主。

3.MCR型SVC设计方案

通过实测电能质量数据和对其进行的分析,确定补偿方案的设计目标为:不投10kV电容器时功率因数补偿至0.97~0.99;消除母线上的电压畸变和闪变,滤除35kV母线3次、5次谐波;通过调节MCR可以将电压稳定在35kV~36.8kV范围之内。

3.1一次设备接线方式

在35kV的4号母线上设计安装FC+MCR型静止型动态无功补偿及谐波滤波装置(SVC),其中FC分为两组,兼做滤波器使用,分别配置为3、5次谐波滤波器。

磁阀式可控电抗器(MCR)采用角形连接,滤波器由滤波电容器和滤波电抗器组成,其控制策略是以稳定35kV母线无功为主要目的,并对电压波动进行修正,采用闭环控制。通过PT检测母线电压,CT检测母线电流,通过控制器计算系统此刻的无功功率值,再根据检测到的母线电压,计算在限定的电压范围内补偿所需的无功功率。通过对MCR晶闸管开通角度的调节,满足稳定系统无功的主要目的。采用闭环控制可以实现快速响应和精确调节,使SVC达到最优的补偿效果。

3.235kV母线补偿容量的计算

35kV侧负荷基波无功补偿量计算,按未投入10kV电容器时功率因数计算。

(1)

式中,P为平均有功功率;为自然功率因数;为补偿后达到的功率因数。计算时由实测值,a1取0.899,a2取0.99,则MVar,考虑到适当余度,补偿设计补偿容量可取21-24MVar。

3.3滤波支路设计

在滤波器设计中,一般不将其设计到真正谐振状态,在整定值时,可将支路的电容变化率分别为1.07%(H3)和2.2%(H5);偏离调谐点范围为0.5%(H3)和1.1%(H5),且滤波支路在设计时考虑了在调谐点谐波频率±2.5%范围内偏移时,均能达到滤波的要求例如:3次滤波器调谐值一般设计为2.985次滤波器设计值一般为4.95,设计滤波器时还要考虑品质因数,这个参数主要是衡量滤波效果;虽然理论上越大越好,但是品质因数过大,系统容易失谐,因此一般单调谐滤波器品质因数为15―45。滤波器主要参数如下表:FC部分全部投入后总设计容量18000kVar,总的基波容量为12000kVar。

3.4磁控电抗器及其控制器设计

磁控电抗器由箱壳、器身、散热片、油枕以及出线套管等组成,其可控硅箱与电抗器本体可置于同一箱体的方式。磁控电抗器设计额定容量为12000kvar。一次接线图如下:

4.效果分析

通过对银城铺变电站35kV母线设计以MCR为主体的SVC无功补偿装置,能够成功地解决目前存在的电能质量问题,提高系统的电压稳定性,其效果主要表现在以下几个方面:

1)功率因数:35kV母线的平均功率因数在0.97以上。

2)谐波:35kV母线各相3、5次谐波电流均明显减小。

3)无功功率:35kV母线系统无功功率因SVC装置的大幅度波动变得非常平稳。

4)动态响应:设计的MCR型SVC装置在负荷发生变化的情况下,MCR能在1~2个周波内响应,并达到稳定。

5)电压偏差率:设计的MCR型SVC装置根据仿真分析,电压合格率均为100%。

另外,从经济效益上讲,设计的SVC装置还对减小电压降落损耗、降低电网线损、抑制闪变、提高电网供电能力和延长变电站电力设备使用寿命等方面发挥了重要作用。

参考文献:

[1]陈伯超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,1999.20~66

[2]徐俊起.新型静止无功发生器的研究:[硕士学位论文].成都:西南交通大学,2003

磁控电抗器由箱壳、器身、散热片、油枕以及出线套管等组成,其可控硅箱与电抗器本体可置于同一箱体的方式。磁控电抗器设计额定容量为12000kvar。一次接线图如下:

4.效果分析

通过对银城铺变电站35kV母线设计以MCR为主体的SVC无功补偿装置,能够成功地解决目前存在的电能质量问题,提高系统的电压稳定性,其效果主要表现在以下几个方面:

1)功率因数:35kV母线的平均功率因数在0.97以上。

2)谐波:35kV母线各相3、5次谐波电流均明显减小。

3)无功功率:35kV母线系统无功功率因SVC装置的大幅度波动变得非常平稳。

4)动态响应:设计的MCR型SVC装置在负荷发生变化的情况下,MCR能在1~2个周波内响应,并达到稳定。

5)电压偏差率:设计的MCR型SVC装置根据仿真分析,电压合格率均为100%。

另外,从经济效益上讲,设计的SVC装置还对减小电压降落损耗、降低电网线损、抑制闪变、提高电网供电能力和延长变电站电力设备使用寿命等方面发挥了重要作用。

参考文献:

[1]陈伯超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,1999.20~66

[2]徐俊起.新型静止无功发生器的研究:[硕士学位论文].成都:西南交通大学,2003

磁控电抗器由箱壳、器身、散热片、油枕以及出线套管等组成,其可控硅箱与电抗器本体可置于同一箱体的方式。磁控电抗器设计额定容量为12000kvar。一次接线图如下:

4.效果分析

通过对银城铺变电站35kV母线设计以MCR为主体的SVC无功补偿装置,能够成功地解决目前存在的电能质量问题,提高系统的电压稳定性,其效果主要表现在以下几个方面:

1)功率因数:35kV母线的平均功率因数在0.97以上。

2)谐波:35kV母线各相3、5次谐波电流均明显减小。

3)无功功率:35kV母线系统无功功率因SVC装置的大幅度波动变得非常平稳。

4)动态响应:设计的MCR型SVC装置在负荷发生变化的情况下,MCR能在1~2个周波内响应,并达到稳定。

5)电压偏差率:设计的MCR型SVC装置根据仿真分析,电压合格率均为100%。

另外,从经济效益上讲,设计的SVC装置还对减小电压降落损耗、降低电网线损、抑制闪变、提高电网供电能力和延长变电站电力设备使用寿命等方面发挥了重要作用。

参考文献:

[1]陈伯超.新型可控饱和电抗器理论及应用.武汉:武汉水利电力大学出版社,1999.20~66

    【办公范文】栏目
  • 上一篇:绩效奖励分配方案(收集3篇)
  • 下一篇:办公室的工作职责(收集13篇)
  • 相关文章

    推荐文章

    相关栏目