关键词:虚拟仿真;教学实验系统;应用
中图分类号:TP391.9文献标识码:A文章编号:1007-9599(2010)05-0000-01
ApplicationofTeaching&ExperimentSysteminVirtualReality
ShanzengLiangjie
(NorthwestUniversityforNationalities,MathematicsandComputerScienceCollege,Lanzhou730000,China)
Abstract:Thepaperintroducedtheconceptionofvirtualrealityandvirtuallabsinthefieldofeducation,andconstructedthestructuremodelofteachingandexperimentsystemwithvirtualreality.Adesignexampleofcomputerinterfaceexperimentteachingandexperimentsystemwithvirtualrealitywaspresented,andthemajorproblemswhichneedtobearousedduringtheprocessofmakingapplicationofvirtualrealityinvirtuallabswerepointedout.
Keywords:Virtualreality;TeachingandExperimentSystem;Application
一、引言
虚拟仿真技术是对虚拟现实技术和系统仿真技术的合称。虚拟现实技术是先进的人―计算机接口技术,其实质是利用计算机产生一个三维的、基于感知信息的临场环境。人可以参与和控制环境,同时环境能够对人的控制行为做出动态的交互反应。系统仿真技术是随着计算机技术的发展而形成的新兴学科,它是通过建立真实系统的数学模型,利用计算机来达成对系统的分析、研究、设计等目的。目前,虚拟仿真技术在军事、教育、医学、工业设计等多个领域都得到了应用。在教育教学领域,虚拟仿真技术能够进行教学活动或实验操作的模拟,具有经济性好、安全性高以及可重复等多种优势,已经开始替代某些费时、费力、费钱的真实试验和教学演示,对传统的教学活动产生了强烈冲击,引发了教学领域产生一系列深刻的变化。
二、虚拟实验的概念
虚拟实验是指借助于多媒体、系统仿真和虚拟现实等技术在计算机上营造辅助实验、部分替代甚至全部替代传统实验各个操作环节的相关软硬件平台。虚拟实验是建立在一个虚拟的实验环境(仿真平台)之上,其重点关注的是实验操作的交互性和实验结果的真实性,因此,在虚拟实验室或者实验设备上,实验者可以完全像在真实的实验环境中一样完成各种实验项目,所进行的操作就像是在真实的实验设备上进行的,并且能够取得不低于或者超出在真实实验环境中或者在真实设备上所取得的实验效果。尤其对于一些对经费、场地和器材等方面都要求较高的实验,虚拟实验具有相当的优势。尤其随着网络技术的发展,基于网络的虚拟实验更是突破了传统实验对“时间和空间”方面的限制,不论是实验者还是指导教师都可以方便的上网进入虚拟实验室进行各种实验,虚拟实验的开展极大的促进了教学实验活动的进行。
三、虚拟仿真教学实验系统的模型结构和实例分析
(一)虚拟仿真教学实验系统的模型
虚拟教学实验系统的设计的着眼点主要建立在对实物实验设备和实验环境的仿真上,包括对实验场景和实验对象的实体仿真以及实验对象内部的数学仿真,对应的仿真模型是实体模型和数学模型,具体的模型结构如图1所示。
图1虚拟仿真教学实验系统的模型结构
在这样的模型结构中,实体模型的优劣程度直接影响虚拟实验的真实感与交互性,而数学模型的精确程度则影响着实验的效果和实验质量。在虚拟实验系统的模拟中,为了逼真地模拟出实验场景,使实验仪器和元器件等对象在外形上与操作上都具有真实感,一般采用三维建模技术进行场景和实体的建模。对于数学模型的构建,则是依据系统之间的相互关系和内在联系机制,依据成熟的理论和模型在分系统之间建立确定的对应关系。因此,对于不同的虚拟实验类型,一般具有不同的数学模型。
(二)微机接口电路教学实验系统的虚拟仿真设计实例
下面介绍了基于虚拟仿真技术建立的微机接口电路教学实验系统设计实例。传统微机接口电路实验中,需要专门的硬件实验设备与普通微机相连,实验的主要过程是在微机中利用asm等工具软件进行接口实验程序的调试操作。其基本过程如图2所示。
图2微机接口电路“半虚拟化”设计方案
对这一基本实验采用虚拟仿真技术进行虚拟教学实验系统设计,应该主要针对“专用硬件实验台”进行虚拟化设计,其实现难点在于真实的实验软件与虚拟的接口电路之间进行虚拟“连接”。利用Windows对底层硬件设备的管理和访问控制方法,可以设计专门的设备驱动程序(VxD)软件来代替外部的实验接口电路。具体的应用技术和设计方法如图3。
图3虚拟硬件接口电路实现方法
(三)虚拟仿真技术在教学实验系统中应用需要注意的问题
随着虚拟仿真技术在教学实验系统的应用日益广泛,在具体实践中也需要注意两个问题:首先,注意强化虚拟仿真技术与多媒体技术的有机结合。多媒体技术具有直观、逼真的视觉效果,有利于构建和营造逼真的实验环境,要充分利用、虚拟技术来,营造逼真的训练工作环境,仿真技术则通过建立真实的数学模型,能够进行实时仿真,这两者之间的融合,有利于构建真实环境下的实时仿真平台,实现虚拟与仿真的无缝联接。其次,根据不同实验的特点确定虚拟教学实验系统的设计思想和仿真工具。虚拟教学实验系统的开发应该注意将实验工程环境的开发和实验仿真过程开发进行结合,一般把仿真过程主要在后台运行,强调实时性和可靠性,而具体的实验工程环境的运行作为前台,强调真实性和高仿真性。因此需要根据具体的实验需求加以侧重。
三、结束语
虚拟仿真技术应用于教学实验系统,是对实物实验的补充、完善和扩展,能够保证实验教学系统中具有良好的开放性和具有真实感的交互,必将引发实验教学领域的深刻变化,虚拟仿真实验教学也将成为实验教学改革的一个重要方向。
参考文献:
切削加工仿真技术的发展动向包括两个方面,其一是开发NC仿真软件,借以显示刀具运动轨迹,并判断刀具、刀夹与工件及其夹具是否产生干涉。
在进行立铣加工时,最基本的任务是切除刀具切削刃包络面通过部分的被加工材料,使保留下来的部分成为已加工面。完成这类加工所用的软件应包括如下内容:刀具、刀具夹头、工件、夹具等的协调,机床主轴的构成及其可工作的范围,能真实地仿真机床和刀具的动作等。特别是近几年来,由于五坐标切削加工的不断增加,在实际加工前应进行NC仿真的重要性日益突出。这类NC仿真软件中,有不少软件具有极为优异的性能,如可从金属切除体积计算出加工效率;根据金属切除体积来判断切削加工是否产生过载;如果负荷固定,由于进给速度过高而产生过载,仿真软件可调整进给速度,防止过载产生,并可缩短切削加工时间等。
切削加工仿真技术的另一发展动向是研究解析切削加工过程中的物理现象,如被加工材料因塑性变形而产生热量,被切除材料不断擦过刀具前刀面形成刀屑后被排出,以及由刀具切削刃切除不需要的材料而在工件上形成已加工面等,并将这一系列切削过程通过计算机模拟出来,目前能达到这种理想目标的产品还为数不多。Thirdwavesystems公司的“advantedge”是采用有限元法对切削加工进行特殊优化解析的软件产品,与用于构造解析的有限元法程序包比较,其最大优点是用户界面优良,机械加工的技术人员能方便地进行解析。美国scientificformingtechnologies公司的“deform”是锻造等塑性变形加工用有限元法解析程序包,最近已被转用于切削加工。
切削过程是切屑、被加工材料的弹性变形和塑性变形的变形过程,与冲压、锻造等塑性变形比较,变形速度(单位时间产生的变形量)非常大,由此产生的塑性变形能量和前刀面上由摩擦产生的能量将引起发热,从而使温度大幅度升高,刀尖在连续而狭小的范围使被加工材料破坏、分离成切屑和已加工面等,这是切削过程的显著特征。而这些现象彼此间存在复杂的相互影响。
如果用有限元解析方式,需输入下列内容:被加工材料特性及摩擦状态等物理特性;切削条件及刀具形状等边界条件。通过有限元解析刚性方程,可输出切削力、剪切角、切削温度等带有切屑生成状态特征的量化参数,在此过程中,无需建立数学模型或提出假设。根据有限元解析的结果,还易于将切屑生成过程、应力、变形等物理量实现可视化。
要获得高精度解析结果,最为重要的输入内容是反映被加工材料应力——变形关系的材料特性,而材料特性的获取是极为费力的工作。今后,随着计算机功率的增大,这种切削过程的物理仿真技术将会逐渐普及。能否迅速普及的关键在于能否及时向用户提供所需的被加工材料的材料特性。
按需开发切削加工仿真技术软件
目前,许多科技人员正在进行生产工程中最基础的切削加工技术的研究,其中多数研究的目的是在弄清楚加工现象的同时,对加工过程进行预测。如果这些研究内容实现了系统的计算机软件化,就意味着能形成一个切削仿真技术软件。如东京农工大学机械学院的实验室就正在进行几种预测性的有关切削加工仿真技术软件的研究。工艺流程和实用仿真采用了横向和纵向相匹配的研究体系,横向与产品设计到加工工序相对应;在纵向上越往上,实用性越好,往下则不仅是实用性,还包括加工现象的解析和实现可视化。
1.刀具信息数据库和解析仿真技术并用的切削条件选择系统
在实际的切削过程中,不应照搬工具厂提供的推荐切削条件,而应根据机床、工具系统、工件装卡等具体情况,反复进行试切削来修正切削条件。同时还应将过去加工中积累的行之有效的参考数据输入数据库,在有效利用这些数据的同时,借助解析方法使切削条件达到最佳化;对于没有参考数据的新的切削加工,则应开发与此相关的切削条件选择系统。该系统中把振动、加工精度、刀具升温、刀具寿命、残余应力等设定为解析内容,在解析的基础上,就能选择出最佳的刀具和调整切削条件。
本系统的数据大致分为三个部分:刀具信息数据、工具系统组成、切削条件。在切削条件中可积累有效的切削加工技术参数。
本文拟用图例表示平头立铣刀加工的最佳铣削效率和最佳化侧面的形状误差。根据数据库选择所需刀具和刀夹,预测由立铣刀和刀夹的弯曲度及卡头和主轴锥度结合部分的旋转变化所导致的加工误差。切削力的预测采用刀尖处的切削力乘以比切削抗力的模式。这是一种最简便的的方法,但却得到了切削力波形与实测值一致的良好结果。计算出每一瞬间由切削力引起的刀具挠曲量,将其和形成已加工面的切削刃位置的位移相连就能得到已加工面的形状。与大规模有限元法的计算比较,计算时间是非常少的,输入刀具信息和切削条件信息,就能容易地仿真加工误差。
尽管数据库里已具有确实适应的切削加工条件,人们仍希望进一步减少加工误差,提高加工效率。实例表明,用这种仿真和实现最佳化方式来修正切削条件是完全可能的。
2.立铣刀加工时的刀具温度
近年来,高速铣削已很普遍,由经验得知,它适用于小切深、大进给的铣削条件,而把握最佳条件却相当困难。铣削加工与车削加工不同,前者属于断续切削,在加工过程中,刀具升温和冷却高速地反复进行。由于热传导给刀具-切屑接触部分是断续进行的,必须根据这一特征来解析刀具温度的变化。热传导量对预测精度影响很大,但不需要对切屑生成状态的变形和热解析相联系进行大规模计算,因此可快速获得解析结果。切削速度、切深、进给的组合将影响最高温度,当加工效率一定时,提高进给速度,刀具温度就会降低,温度降低往往会使进给速度的提高达到极限,而提高进给速度,加工表面就会变得粗糙。因此,如果能很好地平衡粗糙度和温度的关系,就能够选择到两者相互平衡的切削条件。
3.用有限元法进行切削过程的物理仿真
在用有限元法进行切削过程的物理仿真中,作为切削条件输入的内容包括:切削速度、切削厚度、刀具前角、刀具后角、工件材料特性等。对这些参数进行解析后,就能获得切削力、切屑形状、刀具和切屑上的温度分布、应力分布、形变分布、残余应力分布等物理特性输出结果。