关键词:垃圾渗滤液;处理;技术
中图分类号:R124.3
随着我国城市的迅速发展,城市垃圾产量不断增加。目前城市垃圾处理方法主要有焚烧、堆肥和填埋等。其中卫生填埋由于处理量大、成本低廉、技术成熟等优点而被国内外广泛应用。但填埋场产生的渗滤液危害极大,它主要来源于降水和垃圾内部的内含水。若处理不当,会严重危害周边环境和污染地下水。因而渗滤液的收集和处理已成为急待解决的问题,成为国内外研究的热点之一。
1滤液的产生
渗滤液是指城市垃圾在填埋和堆放过程中由于垃圾中有机物的分解产生的水和垃圾中的游离水、降水以及入渗的地下水,通过淋溶作用形成的污水。渗滤液主要来源[1]:(1)垃圾自身的水分;(2)垃圾中有机组分在填埋场内经厌氧、好氧分解产生的水分,产生量与垃圾的组成、pH、温度和菌种等因素有关;(3)填埋场内的自然降雨与径流。其中降水是渗滤液的主要来源,这些水分渗过成分复杂的垃圾时,使垃圾发生分解、溶出、发酵等反应,从而使渗滤液中含有大量的有机污染物、氮、磷和种类繁多的重金属类物质。
2渗滤液的特点
渗滤液的水质随垃圾的组分、当地气候、水文地质、填埋时间和填埋方式等因素的影响而有显著的不同。其显著特征[2]:
2.1有机物浓度高
渗滤液中的BOD5和COD浓度最高可达几万mg/L,主要是在酸性发酵阶段产生,pH值一般在6.0左右(显弱酸性),BOD5与COD比值在0.5-0.6。
2.2水质变化大
渗滤液的水质取决于填埋场的构造方式和垃圾种类、质量、数量以及填埋年数的长短,其中构造方式是最主要的。
2.3氨氮含量高
城市垃圾渗滤液中氨氮浓度很高,且氨氮浓度在一定时期随时间的延长会有所升高,主要是因为有机氮转化为氨氮造成的。在中晚期填埋场中,氨氮浓度高是垃圾渗滤液的重要特征之一,也是导致处理难度增大的一个重要原因。由于目前多采用厌氧填埋技术,导致渗滤液中的氨氮浓度在填埋场进入产甲烷阶段后不断上升,达到高峰值后延续很长的时间直至最后封场,甚至当填埋场稳定后仍可达到相当高的浓度。
2.4微生物营养儿素比例失调
对于生物处理,垃圾渗滤液中的磷元素总是缺乏的,一般垃圾渗滤液中的BOD/TP都大于300。此值与微生物生长所需要的碳磷比(100:1)相差甚远。在不同场龄的垃圾渗滤液中,碳氮比有很大的差异,也会出现比例失调现象。
3圾渗滤液的处理方式
3.1合并处理
合并处理就是将城市垃圾渗滤液就近引入城市污水处理厂与城市污水合并进行处理的方式。城市污水量较大,可对渗滤液起到稀释作用,但需控制好比例,以避免对城市污水处理厂造成冲击负荷。
3.2土地处理
土地处理是利用土壤的自净作用进行处理的方法。目前应用于垃圾渗滤液土地处理的方法主要有人工湿地和回灌处理两种。用人工湿地处理垃圾渗滤液具有费用低、管理方便等优点,但处理效果随季节变化较大,处理有机物的浓度也较低。它适应植物生长期长、生长旺盛的南方地区,不适应北方寒冷地区。回灌处理渗滤液易造成土壤堵塞,氨氮累积,回灌处理后的渗滤液仍有较高的浓度,还需要做进一步处理,因此回灌处理很少单独作为渗滤液的处理工艺。
3.3就地处理合并处理与土地处理比较经济、简单,但受各种客观因素的限制,大部分城市只能在填埋场建立独立的渗滤液处理系统进行就地处理。
4垃圾渗滤液的处理技术
4.1生物处理法
生物处理包括好氧处理、厌氧处理及两者的结合。当垃圾渗滤液的BOD5/COD>0.3时,渗滤液的可生化性较好,可以采用生物处理法,包括好氧处理、厌氧处理及好氧一厌氧结合的方法。
4.2物化处理法
对于老龄渗滤液,必须采用以物化为主的深度处理技术。常见的物理化学方法包括光催化氧化、Fenton法、吸附法、化学沉淀法、膜过滤等。由于物化法处理费用较高,一般用于渗滤液预处理或深度处理。
4.3化学法
和生化法相比,化学法不受水质水量变化的影响,出水水质稳定,尤其是对BOD5/COD值比较低(0.02~0.20),难以生物处理的渗滤液的处理效果较好。但成木较高,所以通常只作为预处理或后续处理。
4.4回灌法
回灌处理法是20世纪70年代由美国的Pohland最先提出的,我国同济大学在20世纪90年代也开始对垃圾渗滤液进行了研究。渗滤液回灌实质是把填埋场作为一个以垃圾为填料的巨大生物滤床,将渗滤液收集后,再返回到填埋场中,通过自然蒸发减少滤液量,并经过垃圾层和埋土层生物、物理、化学等作用达到处理渗滤液的目的。回灌处理方式主要有填埋期问渗滤液直接回灌至垃圾层、表面喷灌或浇灌至填埋场表面、地表下回灌和内层回灌。
5结语
(1)在选择垃圾渗滤液的处理工艺时,由于渗滤液水质复杂性,就需要测定渗滤液的成分,因地制宜,选择最为适合的处理方式。在有条件的情况下,通过一些模拟试验来取得可靠优化的工艺参数,并进行处理工艺的技术经济评价,对实践起指导作用。
(2)城市垃圾渗滤液中氨氮浓度较高,不利于生物处理,因此要开发高效的脱氮技术,其中生物脱氮技术可作深入研究。
(3)根据我国国情,宜发展投资省、效果好的渗滤液处理技术,处理工艺的研究和应用以多种方法的结合为方向,在开发组合工艺时要研究易于管理运行又同时达到处理要求的新型组合工艺。
(4)目前,城市垃圾渗滤液处理研究仍处于起步阶段,对处理工艺,建设标准化的城市垃圾填埋场,渗滤液处理的设计及运行参数等都还有待于进一步探索。
参考文献
[1]赵由才。生活垃圾卫生填理技术[M]北京:化学工业出版社,2004.
[2]杨秀环,牛冬杰,陶红。垃圾渗滤液处理技术进展[J]。环境卫生工程,2006,14(1):46-49.
[3]赵宗升,刘鸿亮,李炳伟,等。垃圾填埋场渗滤液污染的控制技术
[J]。中国给水排水,2000,16(6):20-23.
[关键词]垃圾渗滤液FEO技术应用
垃圾渗滤液是在垃圾填埋过程中产生的一种成份十分复杂的高浓度的有机废水,目前还没有特别有效的治理方法。传统的生化处理法虽然常常用来处理渗滤液,但由于渗滤液中含有多种有毒有害的难降解有机物且水质水量变化很大,生化法的处理效果远不及其对城市污水的处理。“FEO技术”是我公司专门针对垃圾渗滤液开发的处理技术,在BOD5CODcr比值低和很低时,使渗滤液达标的关键性技术。
1垃圾渗滤液的特性
垃圾渗滤液的来源主要有直接降水、地表径流、地表灌溉、地下水、垃圾自身的水分、覆盖材料中的水分和垃圾生化反应的生成水等。其具有负荷高、水质成份复杂、浓度随季节变化大、色度高、氨氮高、有毒性物质较多、可生化性逐渐降低等特征。渗滤液水质特征见表1。
表1垃圾渗滤液水质特性表
项目特性
色味呈淡茶色或暗褐色,色度一般在2000~4000倍之间,有较浓的腐臭味。
pH值填埋初期pH为6-7,呈弱酸性;随着时间的推移,pH可提高到7-8.5,呈弱碱性。若垃圾中煤灰多,呈弱碱性;煤灰成分少,有机物多,呈弱酸性。
BOD5随着时间和微生物活动的增加,浸出液中的BOD5也逐渐增加,一般填埋6个月至2.5年,达到最高峰值,随后BOD5开始下降。
CODcr填埋初期CODcr略高于BOD5,随着时间的推移,BOD5急速下降,而CODcr下降缓慢,从而CODcr高于BOD5。浸出液中的BOD5/CODcr的比值比较高,说明浸出液较易生物降解,当填埋场填满封场后的2~5年中BOD5/CODcr逐步降至0.1,则认为后期浸出液中难于生化降解的成分占主要。
TOCBOD5/CODcr值可反映浸出液中有机碳可生化状态。填埋初期,BOD5/TOC值高,随时间推移,填埋场趋于稳定,浸出液中的有机碳以氧化状态存在,则BOD5/TOC值降低。
溶解总固体浸出液中溶解固体总量随填埋时间推移而变化。填埋初期,溶解性盐的浓度可达10000mg/l,同时具有相当高的钠、钙、氯化物、硫酸盐和铁等,填埋6~24个月达到峰值,此后随时间的增长无机物浓度降低。
SS一般在1000mg/l以下,垃圾填埋高度增加,SS值下降。
氨氮氨氮浓度较高,以氨态为主。
磷浸出液中含磷量少,生化处理中应适当增加与BOD5相当比例的磷。
重金属生活垃圾单独填埋时,重金属含量很低,一般不会超过环保标准,但若渗混入工业废物或污泥混埋时,重金属含量增加,超标可能性大。
细菌浸出液含有毒有害物质及细菌病毒、寄生虫等,其中大肠杆菌含量最大。
2垃圾渗滤液的处理技术
2.1生物处理技术
生物处理可大致分为厌氧生物和好氧生物处理两种技术。在厌氧生物处理装置中,渗滤液中的复杂有机分子被产甲烷细菌转化成甲烷和二氧化碳,产生极少数量的需要处理的污泥,同时还具有低能耗、低运行费和所需营养物少等优点。成熟的工艺有厌氧滤池(AF)、升流式厌氧污泥床(UASB)、高效厌氧反应器(UBF)等。
对于BOD与COD比值远大于0.5的早期渗滤液,含有大量易于生物降解的脂肪酸,好氧系统是非常有效的。微生物在氧气存在的条件下作用于有机物质,为保持好氧阶段生物活性,特别是处理含有高浓度有机物的早期渗滤液时,提供大量的氧气是非常必要的,当渗滤液有机负荷随时间变化时,系统可通过改变氧气供应来调整。好氧生物处理方法包括活性污泥法、生物转盘、滴滤池和氧化塘等。
2.2物化处理技术
物化处理技术是指通过物理化学的方法去除渗滤液中的C0D、SS、色度、重金属等。相对于生物法,物理化学法不受渗滤液水质水量的影响,抗冲击负荷能力较强,出水水质比较稳定,尤其在废水可生化性较差的时候有比较好的处理效果。近年来,用于渗滤液处理的物化法主要有活性炭吸附、化学沉淀法、吸附法、化学氧化法、反渗透法、电渗析、FEO技术等多种方法。其可作为预处理或深度处理而为渗滤液的达标排放和生物处理系统有效运行创造良好的条件。
2.3组合式工艺处理垃圾渗滤液
渗滤液成分复杂,仅采用普通的生物处理工艺难以达到理想的效果,因此需采用合适的预处理措施来提高它的可生化性,以改善后续工艺的运行环境。对于处理垃圾渗滤液采用物化和生化组合式的处理工艺,可以避免这两种方法的缺点。我公司积累近十年的工程实践经验,成功地开发了“厌氧+FEO+氨吹脱+好氧”的处理工艺,该处理工艺已经成功应用于十几个垃圾渗滤液处理工程。实践证明该工艺处理高浓度的垃圾渗滤液是目前确保出水稳定达标的最可行技术路线之一,CODcr、BOD5、氨氮和色度的去除率均很高,是目前较先进和比较可靠的方法之一。
3FEO处理技术介绍
“FEO处理技术”是我公司专门针对垃圾渗滤液开发的渗滤液处理技术,在BOD5/CODcr比值低和很低时,使渗滤液达标的关键性技术。我公司将该技术应用于漳州市九龙岭生活垃圾填埋场渗滤液处理工程,湛江生活垃圾填埋场渗滤液处理工程、阳江生活垃圾填埋场渗滤液处理工程、福安垃圾填埋场渗滤液处理工程、合肥市龙泉山垃圾填埋场渗滤液处理工程等工程均获得成功,净化效果十分显著。
其作用如下:FEO反应器中填料主要由Fe、Al、C、Mn、Zn、石墨等二十几种物质按一定的配比均匀混合而成。FEO反应器由FE罐及高级氧化罐两部分组成,“FE”指反应器中的主要填料铁(Fe),而“O”表示氧化反应。它主要利用电解质溶液中铁屑及其它金属晶体结构与碳之间形成的许多局部微电池,来处理工业废水的一种电化学处理技术。FEO反应器在没有外加电能条件下,充分利用金属-金属、金属-非金属之间的电位差而产生的无数微小电池的作用,使废水中的污染物通过电化氧化-还原反应、凝聚、气浮和沉降等作用,达到净化的目的。其电极反应式如下:
阳极反应:FeFe2++2e,E0(Fe/Fe2+)=-0.44V
阴极反应:2H++2e2[H]H2,E0(H+/H2)=0.00V(酸性介质)
O2+2H2O+4e4OH-,E0(O2/OH-)=0.41V(碱性介质)
O2+4H++4e2H2O,E0(O2/H+)=1.23V
FEO反应器特点是作用机制多、协同效应强、适用范围广、去除效果好、运行费用低、脱色效率高。它采用多组合工业混合原料及多元催化剂,进行多种生物化学反应、电化学反应和凝絮吸附共沉淀效应,从而分解难生化和不可生化的有机物,降低色度,为后续生化处理提供良好保障。
4FEO技术处理垃圾渗滤液工程案例
合肥龙泉山垃圾填埋场渗滤液处理站为我公司于2004年设计施工,并于2005年投入运营。合肥龙泉山垃圾填埋场位于合肥市肥东县桥头集镇,该渗滤液处理站是垃圾填埋场的主要配套工程,设在填埋库区的西北面,该项目由我公司设计施工,合肥市建设投资公司负责工程建设,华夏监理公司负责工程监理。垃圾渗滤液污水调节池容积为5万m3,渗滤液处理站设计处理规模为600m3/d,处理达标后的污水,由一条约10km的管线排入店埠河,最终进入巢湖。
垃圾渗滤液处理站设计进水水质如下:
CODcr≤6000mg/LBOD5≤3000mg/L,
SS≤500mg/LNH3-N≤800mg/L
垃圾渗滤液处理站出水排放标准如下:
渗滤液处理出水水质执行《生活垃圾填埋污染控制标准》GB16889-1997标准中的二级标准,即:CODcr≤300mg/L,BOD5≤150mg/L,SS≤200mg/L,NH3-N≤25mg/L,pH=6~9。
本处理站工艺主体路线:UASB+FEO+氨吹脱+CASS是不同于其它传统处理工艺,其是以先进的专利技术及工艺处理理论为依托,以大量的工程实例为基础逐步发展改进确立起来的,具有高度的针对性及先进性,是目前垃圾渗滤液处理的成熟的处理工艺。而FEO技术作为我公司的专利工艺更是在该工艺主体线路中起到关键的作用。
经过这几年的运营实践,FEO对经过厌氧处理以后的垃圾渗滤液处理平均效果见表2。
表2FEO进出水水质对比表
水质指标CODcr
(mg/L)BOD5
(mg/L)氨氮
(mg/L)色度
(倍)
进水水质300012008003000
出水水质22501020640150
由此可见FEO对CODcr有25%的去除率,对BOD5有15%的去除率,氨氮也有20%的去除率,而对色度的去除率达95%。通过测量进出水的B/C也得到了提高。实践证明,FEO有如下优势:
4.1垃圾渗滤液的色度很高,可达2000倍以上,工艺流程的主体系统采用生化为主的处理工艺,生化处理对色度的去除能力较弱,而“FEO处理技术”对有机色度的去除率可达95%以上。
4.2垃圾渗滤液含有10%~35%难生化降解的有机物质,特别是填埋场到中后期或封场后,难生化和不可生化物质将占主导成份,只通过生化处理无法有效去除。“FEO处理技术”中因加入特殊的催化氧化剂,可使垃圾渗滤液中的大分子难生化物质断链为小分子,同时可改变一些难生化物质的分子结构,通过投加药剂反应可生成沉淀去除。
4.3FEO处理技术可以去除相当一部分CODcr、NH3-N,减少后续生化处理的负荷。缩短生化时间,降低运行成本。
4.4生活垃圾中可能混入一些工业垃圾,增加垃圾渗滤液中重金属的含量,采用FEO处理技术,能有效地去除垃圾渗滤液中的重金属离子,确保处理后的重金属达标排放。
5结论
垃圾填埋场因所处地区气候(降水)、水文特点,也与填埋场运行时间密切相关,渗滤液水质是连续变化的,所以对渗滤液的处理,不仅要考虑工艺方法对渗滤液的处理效果,而且更要考虑该工艺方法对水质、水量变化的适应性。物化法控制条件灵活、调整参数方便可靠,而生物法则对连续变化的渗滤液水质具有较好的适应性,结合两者各自特点,采用组合式工艺“厌氧+FEO+氨吹脱+好氧”处理垃圾渗滤液。FEO技术对于水质水量的变化有很好的适应性,在其水质水量变化时均能够稳定的运行。FEO技术处理垃圾渗滤液将是一个发展方向,有着广阔的应用前景。
参考文献:
[1]闫志明,普红平,王小凤.垃圾渗滤液的特征及其处理工艺评述[J].昆明理工大学学报(理工版),2003,28(3):128-134.
[2]蒋彬,吴浩汀,徐亚明浅谈城市垃圾填埋场渗滤液的处理技术[J].江苏环境科技,2002,15(1):32-34.
[3]丁忠浩,刘子元,王文斌,赵素芬.垃圾渗滤液处理中SBR法脱氮研究[J].武汉科技大学学报(自然科学版),2003,26(1):24-26.
[4]程洁红,马鲁铭.厌氧/SBR/混凝沉淀耦合工艺处理垃圾渗滤液的研究[J].水处理技术,2004,30(3):176-178.
[5]孟玢,李静,王蕾,季民.Fenton氧化处理垃圾渗滤液生化工艺处理的影响因素研究[J].天津城市建设学院学报,2004,10(1):41-45.
[6]ShengH.LinandChinC.Chang,Treatmentoflandfillleachatebycombinedeletro-Fentonoxidationandsequencingbatchreactormethod,Wat.Res.,2000,34(17).
关键词:垃圾渗滤液;环境技术管理
引言:城市生活垃圾的处理方法主要有堆肥法、填埋法和焚烧法等。但垃圾卫生填埋仍是普遍应用的一种处置方法,即使在发达国家,填埋处理率仍然很高。
垃圾渗滤液,是垃圾填埋处理后,由于大气降水的淋溶及地表水、地下水的浸泡,固体废弃物在物理、化学及微生物作用下,产生的高浓度有机废水。这种废水中含有大量有毒有害污染物,如果直接排入环境将严重污染地表水、地下水。我国第一次污染源普查共调查垃圾处理厂2353座,排放的渗滤液中污染物含量:化学需氧量32.46万吨,氨氮3.22万吨,其中氨氮排放量约占全国氨氮排放总量的1.8%。因此垃圾渗滤的无害化处理是垃圾卫生填埋过程中必须特别重视的一个问题。
1.垃圾渗滤液特点
(1)垃圾渗滤液属于高浓度有机废水,具有NH3-N、BOD和COD浓度高,水质水量变化大、有毒有害污染物种类多、微生物营养比例失调的特点。
(2)垃圾渗滤液水质随着填埋方式、地理位置、季节、填埋年龄有重大变化,特别是垃圾填埋场“场龄”的影响更大。“年轻”垃圾填埋场产生的垃圾渗滤液具有BOD、COD浓度高、可生化性较好、pH低的特点。“老龄”垃圾填埋场产生的垃圾渗滤液具有BOD浓度低、COD浓度高、氨氮浓度高,pH值高的特点。
垃圾渗滤液中含有的大量有毒有害污染物目前已经引起人们的关注,国内有关研究者采用GC-MS-DS联用技术检出垃圾渗滤液中93种有机化合物,其中22种列入我国及美国EPA环境优先控制污染物黑名单。随着分析手段及人们对环保意识的提高,垃圾渗滤液中诸如环境内分泌干扰素等有毒有害物质对人体的危害已经越来越受到健康组织的重视。
2.垃圾渗滤液处理存在问题分析
对于垃圾渗滤液处理技术路线一般是“预处理技术+生化处理技术+深度处理技术”,预处理技术的主要目的是去除氨氮、无机物及提高垃圾渗滤液的可生化性。生化处理的主要目的是去除垃圾渗滤液中溶解性有机物、氨氮,深度处理的主要目的是进一步处理渗滤液中的难降解有机污染物、悬浮物、氨氮等物质。目前我国已经建成的垃圾渗滤液处理工程大部分采用了这条技术路线。通常采用的预处理技术包括物理化学法,如吹脱、化学沉淀等,实际工程中应用多的是氨的吹脱处理。生化处理技术相对比较成熟,包括厌氧处理技术和好氧处理技术,技术相对成熟可靠。深度处理技术目前主要以膜技术为主导。表1是我国部分城市垃圾渗滤液处理情况。从表1可以看出,按照目前的排放标准,只有反渗透技术可以使垃圾渗滤液达标排放。反渗透技术处理效果毋庸置疑,但是其设备稳定性、投资及运行成本以及反渗透过程中产生的浓缩液的处理问题也是限制其广泛应用一个因素。我国大部分已经建成的垃圾渗滤液处理工程处理工艺为“预处理+生化处理”,为了达标排放,均需要技术升级改造。对于很多新建项目为了达到环保要求,也不遗余力选择反渗透处理技术。采用反渗透技术在经济发达地区可行,但在经济欠发达地区还是有一定困难得,比如广州市生活垃圾卫生填埋场,垃圾渗滤液处理采用反渗透技术,日处理800m3垃圾渗滤液,投资8000万元,运行成本在50元/t,宁波垃圾填埋场日处理170m3渗滤液,处理采用反渗透技术,投资在1200万元,运行成本在30元/t。因此,在有些地区出现了“想建的,犹豫了,不想建的,有理由了,正在建的,面临建好以后不能达标排放,已经建成的,面临技术升级改造”的状况。所以,我国垃圾渗滤液处理存在极大的技术需求。
表1我国部分垃圾渗滤液处理情况垃圾填埋场名称
渗滤液产生量m3/d
原始浓度(mg/L)
处理工艺流程
出水水质(mg/L)
COD
氨氮
COD
氨氮
青岛垃圾填埋场
170
3000
3000
A/O+MBR外置+NF
150
25
广州垃圾填埋场
800
8000
2000
水解酸化+SBR+微滤+RO
50
宁波垃圾填埋场
170
3000
1500
混凝沉淀+水解酸化+A/O+MBR内置+RO
50
上海垃圾填埋场
1260
18000
2600
水解酸化+SBR
1000
150
大连垃圾填埋场
100
8000
3000
混凝气浮+水解酸化+CAST+RO
50
我国垃圾渗滤液处理存在的主要技术问题包括:
(1)垃圾渗滤液高氨氮问题难以解决
由于垃圾填埋场水文地质条件、填埋方式及垃圾成分的不同,垃圾渗滤液中的氨氮浓度从数十至几万mg/L不等,而且随着填埋时间的延长,垃圾渗滤液中的氨氮还有升高的趋势。高浓度氨氮对垃圾渗滤液的生化处理有严重的影响,导致垃圾渗滤液处理很难达到排放标准。目前,氨氮处理工程应用较多技术的主要有氨吹脱法和生物脱氨技术。垃圾渗滤液氨吹脱技术过程中首先需要加入大量的碱进行pH的调整,工程上常采用的是通过投加大量的Ca(OH)2,很容易造成设备的结垢。在吹脱后进行生化处理前还必须通过投加酸进行回调到中性。对于吹脱出来的气态氨氮,如果不进行回收,势必造成严重的二次污染问题,通过氨回收装置进行回收,又导致整个工艺过程投资加大,并且运行成较高。以上这些缺点严重限制了该技术在垃圾渗滤液脱氮过程中的应用。虽然目前实现了工程化应用,但存在二次污染以及高能耗问题。生物脱氮适合于低浓度氨氮的垃圾渗滤液处理,随着氨氮浓度升高,氨氮对生物处理中微生物容易产生抑制,导致微生物活性降低,因此生物法不适合处理高浓度氨氮。因此开发处理垃圾渗滤液高氨氮的技术是垃圾渗滤液处理的一个关键突破。
(2)垃圾渗滤液深度处理技术缺乏
对于“老化”垃圾渗滤液,由于生物处理很难去除其中难降解有机物,还必须进一步采取深度处理的方法。深度处理技术以物化为主。包括混凝沉淀、吸附、深度氧化及膜处理技术等。混凝沉淀可去除垃圾渗滤液中的悬浮固体、重金属和有机物等,但化学试剂的使用及污泥的处理会带来较高的运行费用。活性炭吸附可去除垃圾渗滤液中的溶解性有机物及微生物等,还可脱色和除臭,但活性炭仅能去除分子量在100~1000的有机物,而且吸附过程中存在堵塞和运行费用高的问题。化学氧化法可有效降低垃圾渗滤液中难生物降解有机物的浓度和色度,增加垃圾渗滤液的可生物降解性,但在化学氧化法中,常见的氧化剂,如臭氧和双氧水的处理成本高,工程上难以实现;电化学氧化法和膜处理技术仅适用于小规模且出水水质要求高的垃圾渗滤液的处理,而且运行费用昂贵。近年来发展起来的超声波、微波和辐照法借助羟基自由基的强氧化性去除有机污染物,提高了垃圾渗透液的可生化性,而且不会带来二次污染,可作为垃圾渗透液生物处理的预处理或后处理。目前垃圾渗滤液工业化处理技术主要是纳滤及反渗透技术。技术的缺点又限制了其广泛的应用。因此开发高效、经济的垃圾渗滤液深度处理技术是保证垃圾渗滤液达标排放的一个关键。
(3)垃圾渗滤液有毒有害物质尚未考虑
垃圾渗滤液是一种有毒有害废水已经为人们所认可,但是我国对于垃圾渗滤液的主要监测指标还是停留在废水的常规指标如:BOD、COD、氨氮、总氮等物质。但随着分析手段及人们对环保意识的提高,垃圾渗滤液中的这些有毒有害物质如环境内分泌干扰物对人体的危害已越来越受到人们的关注。这类污染物质即使含量极其微小,一旦它们进入机体,将对生物体产生严重的后果,如生殖器官、内分泌系统、神经系统、免疫系统异常,产生致癌、致畸、致突变等生物效应,因此环境内分泌干扰物的研究受到了国内外学者的高度重视。因此在开发垃圾渗滤液处理技术的同时必须考虑对这些有毒有害污染的去除效果。只有如此才能真正体现垃圾渗滤的无害化处理,减少环境生态风险,保证水环境安全。
3.垃圾渗滤液处理对策
3.1强化环境技术管理文件的指导性、可操作性,实现垃圾渗滤液有效管理。系统修订相关技术文件,结合我国国情、地区差别以及现有技术可达性,按照分区、分类、分期、分级的原则,专门制定相应的污染控制标准,进一步完善相关政策、指南、标准及工程技术规范文件,使之具有极强的指导性、可操作性、目标可达性。
3.2从源头控制、过程控制、末端治理三方面加强对垃圾渗滤液的控制与治理。在现有基础上积极开发高效、经济的垃圾渗滤处理技术。强化对垃圾渗滤液预处理及深度处理技术的研究与开发,加强高效生物处理技术的研发,在高效生物脱氮、高效厌氧技术等方面展开技术攻关。同时要对垃圾渗滤液处理技术进行优化集成开发,不能通过简单的技术串联进行达标处理,这样势必在垃圾渗滤液领域造成极大地浪费。要积极开发运行稳定、经济合理、易于管理的垃圾渗滤液组合工艺。
3.3加快科技成果的转化及技术的产业化发展,采取积极措施鼓励新技术的产业化,比如以羟基自由基为主的各种高级氧化技术,电化学氧化技术等通过试验研究,优化技术的运行参数,提高技术效率、降低运行成本,同时把这些技术与其他技术进行集成优化,全过程分析技术对垃圾渗滤的处理效果。
3.4加强新技术以及设备的研发。通过多学科相互结合,开发新的垃圾渗滤液处理技术,着重在不同高级氧化处理技术与超声、紫外、电化学技术之间进行集成与开发,充分发挥这些技术的强氧化性,以达到对垃圾渗滤中难降解有机污染物以及对环境干扰素等人体有害的污染物进行彻底氧化与解毒。积极开发垃圾渗滤液一体化设备,促进垃圾渗滤液处理技术的产业化发展。
4结束语
垃圾渗滤液作为现代生活的一种必须产物,已经成为众多环境问题中一个亟待解决的难题。以“减量化、资源化、无害化、稳定化”的原则进行管理是减少垃圾渗滤液的一种有效手段,而通过技术开发以及技术的生产实践是有效控制垃圾渗滤液的主要措施,目前。我国垃圾渗滤液的管理还存在着严格的排放标准与相应技术缺乏不适应的矛盾,还存在着无技术可循的窘境。因此积极开发高效、实用的垃圾渗滤液处理技术目前非常迫切,特别是在以高级氧化技术为基础的垃圾渗滤液处理技术的研究开发。同时,对于垃圾渗滤液对人体的危害研究也应该是一个重大的研究问题
参考文献: