起点作文网

微观经济学函数(收集3篇)

时间: 2024-11-15 栏目:办公范文

微观经济学函数范文篇1

[关键词]数学思想导数边际经济应用

现代化经济理论已经从过去的经济定性分析发展成为量性分析和定性分析相结合。因而高等数学的一些方法如函数理论微积分矩阵概率统计运筹学等知识在经济管理中都有了广泛的应用。

一、数学在经济问题研究中的作用

数学是一门高度抽象的理论性学科,又是一门应用广泛的工具性学科,如何将抽象的数学理论应用到具体的实践中去,以使数学这门古老、严谨、深刻的经典科学和现代数学理论找到崭新的应用市场,这在高等数学的教学过程以及经济学的研究过程中,都是至关重要的。实践证明,用数学方法对经济问题所作的定性分析和定量分析是严谨的、慎密的,可信的。

二、研究经济问题常采用的方法

随着经济问题的多样化和数学手段的丰富,研究经济问题的方法、方式也各有不同。在定量的描述、研究经济关系和经济规律的方法中,一种简单的流程图为:经济理论模型数学型估计模型、确定模型的未知量经济结构分析经济预测政策评价、调整。其中,结构分析包括:研究分析经济变量之间的内在联系和检验经济理论。经济预测包括:借助于科学的数学方法和技术手段,对未来的发展和状况进行描述、分析,形成科学的假设和判断。政策评价是指决策者从众多的决策中选择一种最优的政策来执行。其中用到弹性函数、乘数、生产技术系数、边际效益等数学概念。

三、数学思想在经济学中的应用举例

1.函数在经济分析中的应用

在经济活动中生产者与消费者通过市场交换商品,消费者购买商品是为了得到它的效用,生产者提供商品为了获取利润,而市场就是生产者和消费者之间的桥梁我们知道某种商品的市场需求量是商品价格的函数,一般说来将随着价格的上涨而减少,即需求量是市场价格的单调减少函数,与需求函数相反,供给函数是随着市场价格的上涨而增加。收入是生产者生产的商品售出后的收入,生产者销售某种商品的总收入取决于该商品的销售和价格,成本函数固定成本厂房设备管理者的固定工资等和变动成本原材料劳动者的工资等,利润是生产者扣除成本的剩余部分它也是产量的函数。

2.极限与级数在经济分析中的应用

高等数学与经济学的联系最紧密,与人民大众联系最直接的是利息计算及贷款还款问题.连续复利问题:设一笔贷款(本金),年利率为,则年后的本利和为若一年分n期计息,年利率仍为r,每期利率为r/n,一年后的本利和为而k年后的本利和为,如果计息数n∞时,即每时每刻计算复利,则k年后的本利和为,即有连续复利公式为。如一笔贷款50000元,五年到期,年名义利率为10%,按连续复利计算其到期的本利和。利用连续复利公式得P=82436.1(元)

3.导数在经济分析中的应用

经济学中的一些问题与导数的联系极为密切,涉及到的有边际成本、边际收益、边际利润、边际需求等.边际问题,边际成本、边际收益、边际利润、边际需求在数学上可以表达为自总函数的导数.

比如某工厂对其产品的情况进行了大量统计分析后,得出总利润L(Q)(元)于每月产量Q(吨)的关系为L=L(Q)=250Q-5Q2,试确定每月生产20吨,25吨,35吨的边际利润,并作出经济解释。边际利润函数L’(Q)=250-10Q则L’(Q)|Q=20=L’(20)=50,L’(Q)|Q=25=L’(25)=0,L’(Q)|Q=35=L’(35)=-100,上述结果表明当生产量每月为20吨时再增加一吨,利润将增加50元,当产量每月为25吨时,再增加一吨,利润不变,当产量每月为35吨时,再增加一吨,利润减少100元.这说明,对厂家来说,并非生产的产品数量越多,利润越高.

4.微分方程在经济分析中的应用

为了研究经济变量之间的联系及其内在规律常需要建立某一经济函数及其导数所满足的关系式,并由此确定所研究函数形式,从而根据一些已知的条件来确定该函数的表达式.从数学上讲就是建立微分方程并求解微分方程.利用微分方程可以分析商品的市场价格与需求量(供给量)之间的函数关系、预测可再生资源的产量,预测商品的销售量、分析关于国民收入、储蓄与投资的关系问题等.比如在宏观经济研究中,发现某地区的国民收入y,国民储蓄S,和投资I,均是时间t,的函数.且在任一时刻t,储蓄额S(t)为国民收入y(t)的倍,投资额I(t)是国民收入增长率的倍.t=0时,国民收入为5(亿元).设在时刻t的储蓄额全部用于投资,试求国民收入函数.由题意可知,由假设,时刻t,的储蓄额全部用于投资,那么S=I,即,解此微分方程得由t=0时,y=5代入,得C=5.故国民收入函数得,而储蓄函数和投资函数为:得。

随着金融市场和现代企业制度的建立,高等数学的知识越来越多地渗透到会计、审计、财务管理、市场营销、财政、税务、金融、工商管理等各个经济领域。因此要很好的利用高等数学知识,使经济学走向定量化、精密化和准确化。

参考文献:

[1]黎诣远:经济数学基础[M].北京:高教出版社,1998,7

微观经济学函数范文篇2

[关键词]数学知识经济应用

许多大经济学家同时又是大数学家,数学与经济有着密不可分的联系。分别获得1970年和1972年诺贝尔经济学奖的萨缪尔森和希克斯是因他们用数学方式研究一般经济均衡体系而著称。而最终在1954年给出一般经济均衡存在性的严格证明的是阿罗和德布鲁。他们对一般经济均衡问题给出了富有经济含义的数学模型,利用1941年日本数学夹角谷静夫对1911年发表的荷兰数学家布劳维尔提出的不动点定理的推广,才给出的经济均衡价格体系的存在性证明。他们俩人也因此先后于1972年和1983年获诺贝尔经济学奖。可见数学知识在经济研究中的重要性。我们下面从数学分析、高等代数、概率与数理统计、数值分析、模糊数学、泛函分析等几门数学专业课进一步说明这一点。

一、数学分析在经济中的应用

1.极限部分的应用

经济中,极限是由离散情形推广到连续情形的一种常用思想。例如:假设数额A以年利率R投资了n年,如果每年计m次利率,则终值为。当m趋于无穷大时,就称为连续复利。在连续复利情况下,数值A以利率R投资n年后,将达到:

即(重要极限)

2.微积分学部分在经济中的应用

微分学是与经济学联系最紧密的一部分。数学分析中的条件极值的必要条件在经济中有所应用。一元函数微分和多元函数全微分在经济中都是屡见不鲜的。例如弹性、边际效用、规模报酬、柯布-道格拉斯生产函数、拉弗椭圆、货币乘数、马歇尔-勒那条件、李嘉图模型等无数的经济概念和原理是在充分运用导数、积分、全微分等各种微积分知识构建的。金融经济学中一阶随机占优定理和二阶随机占优定理中不仅涉及到微积分而且涉及到概率统计。

例如(一阶随机占优定理)设为两个只取有限区间中的值的随机变量,和分别为它们的分布函数,那么一阶随机占优于的充要条件为

证明:所谓一阶随机占优于,是指对于上述函数类中的任何有,

即但由分部积分法

其中我们要注意到,由于F-G实际上只在一个有限区间中不为零,上述的积分其实都是只在有限区间中进行的。这一等式对于任何非负可测函数成立。考虑到随机变量的分布函数都是右连续左有极限的递增函数,容易证明,最后一个表达式非负的充要条件为。

二、高等代数在经济中的应用

高等代数作为一个将复杂多元方程简单化求解的数学工具,对分析多种变量相互影响而产生复杂经济现象的经济学的贡献可谓是不言而喻的。比如欲预测10年后某地区的房屋价格,可通过搜集人均收入、土地价格、建筑原材料价格等多种变量的基期数据,用假定和计量的方法、统计学的知识分析房屋价格与各因素的相关程度并用高等代数的数学方法解多元线性方程组,从而计算出相应公式,再加入通货膨胀、利息率等现实因素,便可大致模拟出10年后该地的房屋价格。

三、概率与数理统计在经济中的应用

概率论在保险学中得到最强势的发挥。金融经济学中用到随机变量的数学期望、方差、协方差等。要通过基本概率论的概念才能来理解随机游走、布朗运动、随机积分、伊藤公式等概念。概率论中的随机游走概念和-域的概念在有效市场理论中起本质作用。布莱克-肖尔斯期权定价理论需要概率论中的中心极限定理,它的证明涉及随机变量的特征函数等概念,还涉及随机序列、鞅等概念。又例如切比雪夫大数法则:设是由相互独立的随机变量所构成的序列,每一随机变量都有有限方差,并且它们有公共上界:,则对于任意的,都有:

这一法则的结论运用可以说明,在承保标的数量足够大时,被保险人所交纳的纯保险费与其所能获得赔款的期望值相等。这个结论反过来,则说明保险人应如何收取纯保费。

四、模糊数学在经济中的应用

当上市公司信用评价中的综合分析评价法的各因素具有模糊概念时,权重就带有模糊性。这时如利用普遍的方法就不可避免地带有片面性和主观性。而模糊数学就是利用数学方法来处理客观实际和人类主观活动中存在的模糊现象,于是借助模糊数学的经济评价方法就随之产生。综合评价法一方面集合了AHP法与专家调查法在财务指标评价方面的优势,另一方面发挥了模糊评价方法在具有模糊性的指标评价中的独特作用,因而它能更客观地、更全面地对上市公司的信用进行评价。

五、数值分析在经济中的应用

若衍生证券估值没有精确解析公式时,可用数值计算方法。包括二叉树图方法、蒙特卡罗模拟方法和有限差分方法。

六、泛函分析在经济中的应用

在金融学中,许多情况下都要在希尔伯特空间中考虑问题,而希尔伯特空间为泛函分析中的重要内容。例如希尔伯特空间中的黎斯表示定理:黎斯表示定理指出,希尔伯特空间上的连续线性函数一定可通过某个元素对其他元素的内积来表示。它对金融经济学的意义在于:如果“市场”[由方差有限的某些随机变量(证券的未来价值)所张成的希尔伯特空间]有连续的线性定价函数,那么它一定可通过某个“定价证券”(即“随机折现因子”)来表示。

微观经济学函数范文篇3

【关键词】微积分最优化宏观经济极限理论

【中图分类号】G40-05【文献标识码】A【文章编号】1006-5962(2012)08(b)-0012-01

1数学与经济的关系

数学是经济学理论研究的理想工具,精确而严密的理论研究离不开数学。数学与经济学二者紧密联系,相互促进,共同发展。借助数学模型研究经济学,至少有三个优势:清晰,深入,严密。具体分析就是:第一,前提假定用数学语言描述既清晰明了又精炼,省去了分析文字所耗费的时间与精力;第二,逻辑推理严密、精确,可以防止漏洞和错误;第三,可利用已有的数学定理或数学模型推导出新的结果或者结论,排除一切干扰,得出更为深入的仅凭直觉不易甚至无法得出的结论,挖掘现象之间更深层次的本质联系。运用数学模型讨论经济问题,可以不走或少走弯路,将讨论集中到前提假设、论证过程及模型原理问题上来,从而避免了许多无谓的争执,减少在时间与精力上的消耗,也可在深层次上发现似乎不相关的结构之间的关联。此外,运用数学和统计方法做经济学的实证研究可以把实证分析建立在理论基础上,并从系统的数据中定量地检验理论假说和估计参数的数值。这就可以减少经验性分析中的表面化和偶然性,从而得出定量性结论,并分别确定它在统计和经济意义下的显著程度、作用的大小。

2微积分在经济学中的应用

2.1微积分最优化理论在经济学中的应用

最优化问题是经济管理活动的重点内容,是各类企业在实现资源最优化配置与盈利的有效手段,各种最优化问题也是微积分最关心的内容之一。

拿企业来说,企业最关心的问题当然是盈利。这就要考虑到“边际成本”和“边际利润”了,就拿边际利润来举个例子吧

已知某产品的总成本函数为

C(x)=0.1x2+10x+1000

而需求函数为

X=350-5y

其中y为单位产品销售价,x为需求量(即销售量)

求边际利润函数,以及x=70x=100x=150时的边际利润

解:总收益函数为R(x)=yx,而由题设需求函数有

y=1/5*(350-x),于是,

总收益函数为

R(x)=yx=1/5*(350-x)x

所以总利润函数为

L(x)=R(x)-C(x)=-0.3x^2+60x-1000

从而,边际利润函数为

L'(x)=-0.6x+60

由此得

L'(70)=18

L'(100)=0

L'(150)=-30

由所得结果可知,当销售量为70个单位时,再增加销售可使总利润增加,(再多销售一个单位产品,总利润约多增加18个单位);当销售量为100个单位时,总利润达到最大值,再扩大销售将使总利润减少(当销售量为150个单位时,再多销售一个单位产品,总利润将减少约30个单位)所以最好的收益因为100个单位。

市场总是变幻莫测的,然而一个盈利性的机构最求最大化利益的生产目的永远都不会改变,究竟生产多少才能获得最大的利润,使企业立于不败之地呢?这就需要微积分发挥其巨大的潜力了。

2.2微积分思想在宏观经济中的应用

微积分思想在宏观经济中的应用,首先体现在对外贸易上。作为拉动我国经济的三驾马车之一的对外贸易,既不能跑得太快,伤到别人,也不能跑得太慢,落后了自己,唯一的解决办法就是考虑最优问题。自加入世界贸易组织以来,中国的对外贸易更是频繁且涉及的范围、领域逐步扩大,加之中国的劳动力廉价的优势,商品价格远远低于国际价格,使得反倾销接踵而至,中国的对外贸易面临困境:出口多,贸易摩擦。出口少,影响经济。那么怎样才能有效的解决这个问题呢?这就需要微积分思想的帮助,结合多方面考察,达到一个的平衡的状态。

近十年来,不论我国的进出口总额、国内生产总值、还是国民生产总值,都呈现上升趋势,当我们看到中国一路飙升的经济数字时,会无比兴奋,其实这里也应用到了微积分的思想,函数的单调性。经济的单调递增,是我们经济繁荣的最好见证,但也有一些递增是我们不喜欢的,比如对外贸易的依存度,这说明我们受世界经济的影响也就越来越大。利用内需来带动经济增长是必然选择。

2.3微积分极限理论在经济学中的应用

极限概念是微积分中最基本的概念,微积分中大量的其它基本概念都是用极限概念来表达的。在极限概念的基础之上演变出了其他重要概念:导数概念、定积分概念。微积分建立在初等数学之上.能解决初等数学不能解决的问题,其根本原因在于它引进了一个新的思想方法:“极限”的思想方法。“极限”思想方法揭示了直线与曲线、有限与无限、常量与变量、匀速运动与变速运动等一系列对立统一又相互转化的辩证关系。“极限”思想方法,是微积分中一个重要的内容.是应用微积分解决实际生活问题的重要思想来源。而经济学中的许多问题.也是用微积分来解决的.其中就涉及到“极限”思想这一重要方法。因此,用“极限”思想方法指导经济学中相关概念的学习,对于掌握经济学中的重要概念有很大的帮助。

总结:微积分的数学思想对于经济,就像阳光对于我们人类,至关重要。经济的发展需要微积分的支持,微积分的进步也离不开经济发展的大背景,只有与经济紧密结合,微积分才能在不断变化的实际应用中不断发展与创新。我们要充分利用数学的指导思想来引领经济的健康发展,为经济的发展提供更有利的工具,二者的结合也需要我们充分发挥主观能动性,这就需要我们从多方面共同努力。

参考文献

[1]龚德恩.范培华.《微积分》.高等教育出版社.

    【办公范文】栏目
  • 上一篇:装配工年度总结(整理2篇)
  • 下一篇:装配部门质量工作计划(整理2篇)
  • 相关文章

    推荐文章

    相关栏目