关键词:宠物医学《小动物影像技术》教学改革
随着我国宠物医学的不断发展,小动物医学影像技术在宠物临床工作中的地位更加重要,用人单位对影像专业人才的需求越来越大。我院开设《小动物影像技术》课程已有三年,在三年的理论与实践教学中,结合我院学生的特点,结合本专业人才培养的目标,通过教学方法的改进,教学实践基地的建设,教学措施的不断完善,我院在小动物医学影像技术教学中收到了良好效果,使学生的综合素质得到了明显提高,受到用人单位的好评。
一、理论教学中突出影像技术课程特点
小动物影像技术具有自己独立的理论体系,包括放射线诊断技术和超声诊断技术,是多学科相互渗透的综合结果,涉及知识面广。影像技术的核心是为临床提供含有最大信息量的图像,协助宠物医生对疾病作出正确的诊断。专业技术人员要掌握影像专业知识,保证医疗设备正常运转,全面发挥仪器设备的功能。教师要按照教学大纲要求,将放射线技术和超声诊断技术按一定比例分配学时。放射线技术要强调理论知识的学习,理论和实践交叉进行,让学生理解理论指导实践,让学生通过反复的实践加深和巩固理论。超声诊断技术在掌握理论原理的前提下,强调实践,通过大量的实验课,让学生首先掌握正常机体声像图表现,之后通过人造病例,让学生掌握具有病变的声像图表现,从而达到对临床常见病例能够进行诊断的水平。同时,影像教学要让学生及时巩固解剖学、病理学、诊断学、疾病学等课程知识,因此,小动物影像技术课程在专业基础课与专业诊断课之间起着承前启后的作用,具有自身的特点。
二、教学内容要与时俱进
人医医学影像学包括常规放射学、CT、核磁共振、DSA、超声学、核医学、PETCT与计算机操作技能等,而宠物医学影像技术目前主要包括X线技术和B超技术,滞后于人医,设备也落后于人医,但随着宠物医学的繁荣与发展,在不断向人医看齐。因此,随着宠物医学的发展,教学内容和方法需进一步补充和完善。比如,目前宠物医疗中,X线设备已由普通X线机发展到使用数字X线技术,B超设备已从黑白B超发展到彩超,因此,在教学中教师就要及时增加数字X线技术和彩超诊断技术知识,从而适应并满足市场对人才的新要求。
三、教学手段采取多样化
我院影像技术课程在大三上学期开设,为45学时,教学学时少、内容多,一直是困扰教学的大难题。怎样在有效的时间内让学生掌握更多的知识是我在教学中一直思考的问题。传统的教学模式是教师讲、学生听,这样教出的学生理论成绩可能比较好,但实际操作和图像分析成绩不理想,尤其是接触临床后,学生在较长时间内不能独立操作设备和分析评价照片,存在理论与实践脱节的现象,这不符合职业院校培养高技能人才的要求。为改变这种状况,我在教学中不断摸索,从多方面进行了努力。
一方面,大量收集影像素材,将平时在宠物医院门诊工作中遇到的病例拍摄记录下来,将X线片和超声图片保存下来,融入到平时的教学中。教学时将现代教学手段如电脑、多媒体、挂图等应用到理论讲解,将收集的临床所见病例搬到课堂分析讲解,充分利用图片教学,使学生通过感性认识加强理解和记忆,教学中强调科学性和系统性。课堂讲授把教材内容分为详细讲解、重点讲解和一般介绍部分,实验和见习课要紧跟课堂进度,要重视动手能力和分析问题能力的培养,使其真正达到理论与实际相结合,从感性认识上升到理性认识,给学生讲解如何分析图像,评价图像的顺序和方法。针对上节课的内容,选择在临床诊疗中遇到的典型病例和照片,利用课堂前几分钟,让学生独立分析病例、阅片,最后教师进行总结。这样学生会进一步掌握所学知识,很快进入角色,求知欲望增强,接下来的课堂效果会非常好,学生收获会更大。这样能提高学生理论联系实际的能力和综合判断的能力,使学生从一开始就认识到该学科的严肃性、科学性和实践性很强,培养其认真、踏实、严谨的学习态度和良好的学习方法。
另一方面,加强并增加实践基地实践教学,通过人为制造各种需要影像学诊断的常见宠物疾病,供学生实践用,从而解决实践时缺乏真实病例的难题,避免纸上谈兵,并通过不断的见习、阅片等增强学生的感性认识,提高学生的学习兴趣,在理解的基础上加深记忆,无形中提高能力。此外,为尽快提高学生的诊断能力,缩短从理论到实践的进度,坚持上课时读片,多讲临床医师如何根据临床资料对X线片进行分析的方法心得,使学生吸取经验。
四、加强学生的操作技能训练
小动物影像技术是一门应用性很强的课程,培养学生的动手能力和解决实际问题的能力是影像技术教学的关键。因此,在实验课上和实习阶段,教师要加强学生独立操作训练,让每一位学生都亲自动手操作,从而掌握基本操作技能,如上消化道和全消化道的钡餐造影、钡灌肠、膀胱造影、脊髓造影等特殊造影的操作技能。首先要求学生熟悉如何操作机器,预先布置操作内容,预习操作步骤和注意事项,操作前老师先复述演示,然后在旁边指导操作过程,让学生多练。操作结束后,再对获得的影像图片进行讲解与分析。如此反复,不断加强加强学生的操作技能。
影像技术水平的高低,关系到影像诊断水平的高低,也关系到疾病诊疗水平的高低。培养技能人才的职业院校,只有通过不断的探讨,对教学方法和学生学法进行不断改进,才能收到明显教学效果,所培养出来的学生的能力才会不断提高,才会获得用人单位的认可。根据三年的不断教学改革,实践证明,通过上述方法,我们在短的时间内可培养出具有较强动手能力,适应社会发展需要的小动物医学影像专业人才。
参考文献:
[1]李陟,林黎娟.医学影像技术专业教学体会[J].中国医疗前沿,2008,3,(6):50-51.
[2]刘淑冰,许达生,余深平等.浅谈医学影像实习生临床工作能力的培养[J].临床放射学杂志,2001,20,(7):552-553.
1核医学成像相对于X射线成像技术,核医学成像处理微小尺度的扫描.核医学成像借助静脉注射的放射示踪剂,通过扫描确定示踪剂的吸收情况来确定组织的病变情况.核医学成像包括三个主要手段,分别是平面闪烁显像,单光子发射计算机断层显像(SPECT)和正电子发射断层成像(PET/CT).其中,平面闪烁显像被运用于全身肿瘤检测,尤其对骨质和转移性肿瘤较为有效;SPECT被运用于冠心病与心肌梗塞的检测,以及冠状搭桥与溶栓治疗的监测;PET/CT具有高精度的三维成像功能,主要用于的肿瘤诊断.相对而言,核医学成像技术的信噪比普遍较低,空间分辨率较低(约5~10mm),同时图像获取时间较长.但由于人体本身不产生辐射,核医学成像具有极高的敏感度和特异性.与X射线成像技术一样,该技术也要利用对人体有害的放射性元素作为激励源,对患者仍具有一定危害.2核磁共振成像四种主要的临床医学诊断设备中,核磁共振成像(MRI)技术是最新研发的.其研发者PaulLaut-erbur与PeterMansfield于2003年共享了诺贝尔生理学或医学奖.MRI的主要优势包括:不引入电离辐射危害,具有很好的软组织区分度,低于1mm的高空间精度等.MRI在各种疾病诊断中发挥重要作用,囊括神经、心脏肝脏、肾脏和肌肉骨骼疾病的诊断.但由于强电磁效应,很大一部分病人由于在手术中植入金属植入物而不能接受MRI诊断,因应用环境有所限制.典型的核磁共振系统包括一个超导电磁体,三个场效应梯度线圈和一个射频发射接收器.超导体一般具有3Tesla磁场强度.在未加磁场的情况下,氢原子核呈现杂乱朝向,人体整体磁场强度为0,在加入强磁场后,氢原子吸收能量其磁偶极围绕外加磁场方向进动,达到激发状态.磁场消失时,氢原子会释放能量恢复到平衡状态,这个过程称为弛豫过程.通过弛豫过程的时间的测量,可以区分包括结合水、顺磁性物质和脂类分子等不同结构.通过分析不同成分的分布,可以确定病症的状态.测量弛豫效应主要通过电磁感应线圈完成,后端对信号进行编码重构将弛豫过程进行显像.3相关热点问题与发展趋势3.1温柔影像运动尽管多种医学影像技术对疾病诊断提供了极有价值的信息,检测过程中对人体引入的危害不可忽视.美国一项调查表明,2006年,医用辐射已经占到平均人体接受辐射量的50%.基于此原因,医学者与医务工作者更多地开始关心如何在最小的辐射剂量与最合适安全保护措施下通过影像技术诊断出相关信息.从2008年起,在美国儿童放射社团的倡导下,温柔影像运动广泛展开并取决了卓越成绩.温柔影像运动致力于减少儿童医学影像检测中的辐射剂量.其成果主要包括:降低最高辐射剂量作为放射学研究的硬性限制,重新制定CT断层扫描标准,在世界范围内举办会议并普及医学辐射危害问题.3.2临床药物试验医学影像技术同时被用于加速较为缓慢的临床药物研发过程.通过PET以及MRI对药物在人体内部产生的分布影像,以及病变区域的发展情况,有助于快速确定药物性能及副作用.典型的影像辅助临床药物试验包括三个部分:(1)确定合理的影像检测过程;(2)有保障的影像服务中心;(3)临床实验场所与实验病人.3.3新型影像技术的开发及应用除上述主流医学影像技术外,研究者同时在进行新型影像技术的开发和应用.其中光学相干断层扫描(OCT)通过红外光(用830nm近红外光)的干涉原理进行亚微米级别的高精度成像,目前已被运用于人眼视网膜疾病的检测与治疗监测;阻抗成像技术(EIT)通过测量人体组织电导率的差异进行疾病诊断,人体组织的生理功能变化能引起组织阻抗的变化(如组织充血和放电等),组织病理改变也能引起组织阻抗的变化(如癌变等),这些信息将会在EIT图像中体现出来.所以EIT具有功能成像的性质.该技术对人体无创无害,系统结构简单,测量简便,在对于患者长期的图像监护这方面具有广泛的应用前景,这些是目前多数临床成像手段难以做到的.同时该技术造价低、费用低的特点也非常适合进行广泛的医疗普查.虽然目前其图像分辨率不能与CT等成像技术相比,但它仍是一种有应用前景的新型成像技术.这种技术的时间分辨率很好,因而可连续监测实际的应用.2011年,第一个商用EIT肺功能检测设备正式公布.总之,医学影像技术将会在医疗诊断的精度、安全化检查的水平上不断提高;应用的范围也会不断扩大,不仅在医学医疗诊断上应用越来越广,在药物筛选和研究中也会得到越来越广泛的应用。作者:麦青单位:武汉市城市职业学院
【关键词】医学;影像;物理;技术
【中图分类号】R-0【文献标识码】B【文章编号】1671-8801(2015)03-0272-02
当前时代背景下的医学影像物理和医学影像技术发展以依靠功能成像为主,核心点即为人体心理生理成像和人体心理功能成像。我们通常所说的生理成像也就是基础性参数成像,此项内容以生理参数形式在人体内部进行分布,上述分布形式需要相关人员进行数据重建才能获得,之后在此基础上还要给予其数次分析和详细计算。心理成像技术的复杂性显而易见,由于多少会联系到实验设计的准确性,成像设备设定过程中要对其进行被试控制以达到预期效果。但是心理成像临床精神疾病诊疗实验才会起突破最大的一个点,内生物法分析动态成像和反义核酸水动态成像是现下医学领域多次讨论和研究的科学问题之一,上述成像方法和成像技术会对医疗机构改革造成重大影响。
一、医学影像物理要点分析
1.X射线成像要点分析
1970年之后出现了X射线断层成像技术,X射线断层成像技术是较为传统的影像技术之一,以也是最为成熟的成像方法之一,X射线断层成像技术速度之快足可以完成对心脏进行动态成像,将显像增强剂XCT成像技术进行科学合理融入,可对血管病变进行检查,同时也可对血脑屏障病灶破坏与否进行适时检查,此项技术实质上归属于功能成像的基本范畴之内。需要注意的是,病人体内剂量接收和病人片厚接收过程中,医生均应进行折中筛选,对比度因素提高和相关空间分辨率提高,二者会受到一定制约因素影响,但是多模态集成成像基本装置中,新型PET和MRI都相继问世,在某种程度上为用户提供质量方法选择权限,软件水平元素和硬件水平元素之上的医学影像集成有时呈多模态发展趋势,此类状况也是未来发展趋势之一。
2.核磁共振成像要点分析
采集技术以成为操作主选,其发展态势偏于良性化,但是气体成像确是商业首选,肺部现象中的体现尤为突出,当下MRI基本功能成像设备应用范围内,主要分为人脑认知功能成像内容,此种内容旨在对人体大脑工具机制进行实时性的心理测量,并在诊断过程中可以为肿瘤疾病等提供相应可靠治疗信息,之后在此基础上为体内肿瘤发展阶段信息以及相关体内肿瘤扩散程度信息等且进行及时准确判断,一般情况下,其以人脑功能可视化工具形式产生。MRI设备通过不断更新与调整,其已然达到了10Tesla的高超操作水准,具体性结构系统发杂程度相对于设备维护因素和设备功能开发因素而言,其是及其重要的。单从数据采集角度而言,微电子技术会被适当应用到体素水平研究上,通过并行采集技术完成编码技术脱离,使得MRI成像速度得到稳步提升。
3.超声波成像要点分析
UI实质上以非电离辐射成像模态形式产生,主要分为平面成像产品和对应断层呈现产品两种,因为二维成像才是其重要组成部分和重点操作环节,还有就是血液流动彩色杜普勒成像仪器设备的合理接入,此项产品便难以流通,三维成像技术和相关三维技术产品普及程度不高,但是我们此处所谈及的三维也并不是真正意义上的三维,其主要是指将二维切片进行叠加,在叠加之后得到所需的准三维图像。需要注意的是,UI仪器设备发展过程中极有可能超过X射线成像,并会成为医学影像工作中的首选医学工具。应该了解到,超声波成像具备成像安全可靠和操作价格低廉等优异性,所以诊断治疗和介入治疗以及相关影像检测环节等都会得到不断发展与完善,其数量基础性增长速度已然超乎人类想象。
二、医学影像技术要素分析
处于首位层次上的工作和与处于首要层次上的硬件相关的软件关系尤为密切,二者主要对成像装置操作部件控制内容进行承担,与此同时,数据采集内容和图像预处理内容以及相关图像重建内容等也被包含在内,并且也需要将临床数据信息进行采集,之后在此基础上对其加以分析。依据长远角度而言,医学软件和医学硬件的结合是医学领域发展过程中的必然需求,以此种模式便可有效提高医学水平的竞争力度。次要层次软件核心针对环节是对机械数据进行分析和处理,需要医护人员相互配合才能完成正规操作,现下我国没有形成三位一体合作机制,现有商业软件开发仍旧落后与他国。PACS技术的出现有力补漏了技术空缺,节点设置将成像设备作为主要内容,多模态形式之上的医学影像资料信息会被不同类型专业图像处理平台加以处理以有效满足基础性医院临床工作需求。上述软件与图像工作平台相互联系,之后在此基础上在于与PACS进行对接,以此种模式来完成局域网节点创建,适时通过与医院就医病人接诊过程进行病人具体信息录入,完成优良性质为主的图像站创建。此时需要在作出科学合理病情诊断的同时打印出相关病情报告,图像站中的工作人员可以对同意病人进行数据信息采集,然后与图像配准环节有机融合,只有这样才能在一定程度上提高医院对病人的治疗质量和诊断效率。
结束语
综上所述,医学影像物理和医学影像技术是当前物理学整体中的核心分支结构,需要对成像问题和图像处理问题以及相关医学图像临床应用问题等有所了解。与此同时,物理问题内容和算法内容以及对应软件设计内容也是其中重点,疾病诊断医学影像内容和疾病治疗医学影像内容以及疾病科研医学影像内容都是重要人体信息载体,合理分析影响物理和技术可促进行业内部的稳定发展。
参考文献:
[1]周洁,白木.21世纪的医学影像[J].医疗保健器具.2001(02)
[2]陈卫国,黄信华,张雪林,王晋豫.医学影像存储与传输系统构建策略和实施的初步体会[J].中华放射学杂志.2002(10)
[3]威廉・亨达.21世纪的医学影像[J].医疗保健器具.2003(06)