论文摘要:随着计算机技术的飞速发展,智能计算方法的应用领域也越来越广泛。本文介绍了当前存在的一些智能计算方法,阐述了其工作原理和特点,同时对智能计算方法的发展进行了展望。
TheAnalysisforSeveralClassicAlgorismofIntellegenceComputation
YANGMing-hui
(WuhanUniversityofTechnology,Wuhan430074,China)
Abstract:Asthecomputertechnologydevelopsfast,thefieldforintelligencealgorismbecomewiderandwider.Inthispaper,Iintroducesomemethodsforintelligence,andanalyzetheirPrinciplesandcharacters,finallymakeaForecastofthedevelopofintegellencecomputation.
Keywords:IntelligenceComputation;ArtificialNeuralNetworkAlgorithm;Geneticalgorithm;AnnealingAlgorithm
1引言
智能算法也称作为“背影算法”,是人们从现实的生活中的各种现象总结出来的算法。它是从自然界得到启发,模仿它的原理而得到的算法,这样我们可以利用仿生原理进行设计我们的解决问题的路径,这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法等,下面分别对其进行分析。
2人工神经网络算法
2.1人工神经网络(ARTIFICIALNEURALNETWORK,简称ANN)
人工神经网络是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
2.2人工神经网络的特点
人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。
由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图像。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。
正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显着的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。
人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力的一大飞跃。
3遗传算法
3.1特点
遗传算法是解决搜索问题的一种整理算法,对于各种整理问题都可以使用。搜索算法的共同特征为:(1)首先组成一组候选解;(2)依据某些适应性条件测算这些候选解的适应度;(3)根据适应度保留某些候选解,放弃其他候选解;(4)对保留的候选解进行某些操作,生成新的候选解。在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。
遗传算法还具有以下几方面的特点:
(1)遗传算法从问题解的串集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。
(2)许多传统搜索算法都是单点搜索算法,容易陷入局部的最优解。遗传算法同时处理群体中的多个个体,即对搜索空间中的多个进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。
(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作。适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。
3.2运用领域
前面描述是简单的遗传算法模型,可以在这一基本型上加以改进,使其在科学和工程领域得到广泛应用。下面列举了一些遗传算法的应用领域:(1)优化:遗传算法可用于各种优化问题。既包括数量优化问题,也包括组合优化问题;(2)程序设计:遗传算法可以用于某些特殊任务的计算机程序设计;(3)机器学习:遗传算法可用于许多机器学习的应用,包括分类问题和预测问题等。
4退火算法
模拟退火算法来源于固体退火原理,将固体加温至充分高,再让其徐徐冷却,加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小。根据Metropolis准则,粒子在温度T时趋于平衡的概率为e-ΔE/(kT),其中ΔE为温度T时的内能,ΔE为其改变量,k为Boltzmann常数。用固体退火模拟组合优化问题,将内能E模拟为目标函数值f,温度T演化成控制参数t,即得到解组合优化问题的模拟退火算法:由初始解i和控制参数初值t开始,对当前解重复“产生新解计算目标函数差接受或舍弃”的迭代,并逐步衰减t值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(CoolingSchedule)控制,包括控制参数的初值t及其衰减因子Δt,每个t值时的迭代次数L和停止条件S。
5展望
目前的智能计算研究水平暂时还很难使“智能机器”真正具备人类的常识,但智能计算将在21世纪蓬勃发展。不仅仅只是功能模仿要持有信息机理一致的观点。即人工脑与生物脑将不只是功能模仿,而是具有相同的特性。这两者的结合将开辟一个全新的领域,开辟很多新的研究方向。智能计算将探索智能的新概念,新理论,新方法和新技术,而这一切将在以后的发展中取得重大成就。
关键词:自主导航;人工智能;模糊神经网络;避障;BP神经网络
中图分类号:TP79文献标识码:A文章编号:1005-3824(2014)03-0083-03
0引言
2013年12月14日21时11分,嫦娥三号探测器在月球表面预选着陆区域成功着陆,装着红外成像光谱仪、避障相机、机械臂和激光点阵器等设备的月球车“玉兔”驱动着6个轮子在月球表面留下了历史的痕迹。这标志着我国已成为世界上第3个实现地外天体软着陆的国家,也展现出了智能控制系统[1]在航天事业上的卓越应用。在如今的社会生活中,随处体现着智能技术的存在,人们已经离不开智能技术,智能机器人的发展也飞速前进,从儿童的玩具机器人到太空探索的机器人,可以预见智能机器人的应用将更加广泛。近年来,非线性动态系统的自适应控制在我国引起了广泛的研究,模糊神经网络控制是一个重要的自适应方法,因此得到了很多专家学者的青睐。
模糊逻辑控制在宏观上模仿人的思维,处理语言和思维中的模糊性概念,它是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术;神经网络是从微观上模仿人的智能行为,进行分布式并行信息处理算法的数学模型,它是根据人脑的生理结构和信息处理过程创造的[2]。模糊控制与神经网络各自都有一定的应用局限,因此,人们早在20世纪80―90年代就把它们相结合,组成更为完善的控制方法。模糊控制与神经网络的结合有多种方式,根据研究角度和应用领域的变化而不同。1模糊控制与神经网络的介绍
1.1模糊逻辑控制系统
模糊逻辑控制系统主要包含输入变量、模糊控制器、被控对象和偏差。模糊逻辑控制系统结构如图1所示。
知识库:是模糊控制器的核心。由数据库和规则库组成,数据库中存着有关模糊化、模糊推理、解模糊的一切知识,规则库是由若干模糊规则组成的。
模糊推理机:根据模糊逻辑法则把逻辑规则库中的模糊“if-then”转换成某种映射。
反模糊化:反模糊化的方法一般有最大隶属度平均法、最大中点法、面积等分法、重心法和加权平均法等。
模糊控制的优点:可以在预先不知道被控对象的精确数学模型;规则一般是由有经验的操作人员或者专家的经验总结出来并且以条件语句表示的,便于学习和理解;控制是由人的语言形式表示,有利于人机对话和系统知识的处理等。不足之处:精度不够高;自适应能力有限;模糊规则库非常庞大,难以进行更改优化[3]。
1.2人工神经网络
人工神经网络(ANN)是一种模拟人脑神经系统的结构和功能的运算模型,由大量的节点,即神经元及相互之间连接构成的,它是人工方式构造的一种网络系统。神经元结构模型如图3所示。
传递函数f又称转移函数或激活函数,是单调上升的有界函数,常用的转移函数有线性函数、斜坡函数、阶跃函数及单双极S型函数等。但是最常用的还是单极S型函数:
神经网络的结构形式也有几种,例如,全互连型结构、层次型结构和网孔型结构等[4]。前馈型网络是一类单方向层次型网络模块,其最基本的单层神经元网络如图4所示。
图4单层神经元网络3层BP神经网络是比较常用的结构,图5是它的基本结构。
图5BP神经网络的基本结构BP神经网络至少有3层,图5中,第Ⅰ层是输入层,第Ⅱ层为隐藏层,第Ⅲ层为输出层。由于3层的BP神经网络就具有了模糊系统中万能逼近的能力[5],为了不使系统变得更复杂,本文就只用了3层的BP神经网络,当然,也可以根据自身的实际应用情况增加隐层的层数,但并不是层数越多,精度就越高,相对的系统的反应时间就会增加,时延也会增长。
神经网络的优点:能够通过学习和训练获取用数据表达的知识,不仅可以记忆一直获得的信息,还具有较强的概括及联想记忆能力,它的应用已经延伸到各个领域,在各方面取得很好的进展等。不足之处:缺乏统一的方法处理非线性系统;网络的权值是随机选取的;学习的时间长;无法利用系统信息和专家经验等语言信息;难以理解建立的模型等[6]。
所以,综合以上模糊逻辑系统与神经网络各自的优缺点,就提出了一种它们的结合方法,即模糊神经网络控制方法。
2模糊神经网络的结合方式
模糊神经网络大致分为3种形式:逻辑模糊神经网络、算术模糊神经网络和混合模糊神经网络。
在这3种形式的系统中,模糊神经混合系统是根据模糊控制系统和神经网络各自不同的功能、用途集成在一个系统里面的[7]。在这类系统中,我们可以将神经网络用于输入信号处理,模糊逻辑系统用于行为决策[8](如图6),或者把模糊逻辑系统作为输入信号处理,神经网络系统作为输出行为决策,再或者是将神经网络去代替模糊控制器的一部分,还可以将基于神经元网络的模糊系统或者神经元网络用在模糊神经混合系统中。
在本文的应用中,使用的是轮式智能小车,它一共安装了3个超声波传感器、3个红外传感器和1个角度传感器,红外传感器除了应用在小车循迹外,还用来增加控制系统测量的精确性和弥补超声波测距的盲区。例如,在某一路或者几路超声波受到了外界的干扰时,红外线就可以测量出系统所需要的数量值。超声波与红外线用来测量小车到左、前、右障碍物的距离Ll,Lf,Lr;模糊神经系统中控制器的输入包括:Ll,Lf,Lr,小车与障碍物的夹角tg;输出为小车的转角sa和小车的加速度va。将Ll,Lf,Lr的模糊变量设为{near,far},论域为(0―2m);tg的模糊变量为{LB,LM,ZO,RM,RB}表示{左大,左小,零,右小,右大},论域为(-1800,1800);距离和夹角的隶属度函数如图7和图8所示。输出变量的隶属度函数在这里就不再赘述了。
在系统解模糊化时,是将一个模糊量转换成确定量,常用的解模糊化的方法有最大隶属度函数法、重心法、加权平均法。在本文中用的是重心法。
智能小车避障的控制系统如图9所示。
关键词:人工神经网络遗传算法模拟退火算法群集智能蚁群算法粒子群算
1什么是智能算法
智能计算也有人称之为“软计算”,是们受自然(生物界)规律的启迪,根据其原理,模仿求解问题的算法。从自然界得到启迪,模仿其结构进行发明创造,这就是仿生学。这是我们向自然界学习的一个方面。另一方面,我们还可以利用仿生原理进行设计(包括设计算法),这就是智能计算的思想。这方面的内容很多,如人工神经网络技术、遗传算法、模拟退火算法、模拟退火技术和群集智能技术等。
2人工神经网络算法
“人工神经网络”(ARTIFICIALNEURALNETWORK,简称ANN)是在对人脑组织结构和运行机制的认识理解基础之上模拟其结构和智能行为的一种工程系统。早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。其后,FRosenblatt、Widrow和J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。据神经生物学家研究的结果表明,人的一个大脑一般有1010~1011个神经元。每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。树突的功能是接受来自其它神经元的兴奋。神经元细胞体将接受到的所有信号进行简单处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
2.1人工神经网络的特点
人工神经网络是由大量的神经元广泛互连而成的系统,它的这一结构特点决定着人工神经网络具有高速信息处理的能力。人脑的每个神经元大约有103~104个树突及相应的突触,一个人的大脑总计约形成1014~1015个突触。用神经网络的术语来说,即是人脑具有1014~1015个互相连接的存储潜力。虽然每个神经元的运算功能十分简单,且信号传输速率也较低(大约100次/秒),但由于各神经元之间的极度并行互连功能,最终使得一个普通人的大脑在约1秒内就能完成现行计算机至少需要数10亿次处理步骤才能完成的任务。
人工神经网络的知识存储容量很大。在神经网络中,知识与信息的存储表现为神经元之间分布式的物理联系。它分散地表示和存储于整个网络内的各神经元及其连线上。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。只有通过各神经元的分布式综合效果才能表达出特定的概念和知识。
由于人工神经网络中神经元个数众多以及整个网络存储信息容量的巨大,使得它具有很强的不确定性信息处理能力。即使输入信息不完全、不准确或模糊不清,神经网络仍然能够联想思维存在于记忆中的事物的完整图象。只要输入的模式接近于训练样本,系统就能给出正确的推理结论。
正是因为人工神经网络的结构特点和其信息存储的分布式特点,使得它相对于其它的判断识别系统,如:专家系统等,具有另一个显著的优点:健壮性。生物神经网络不会因为个别神经元的损失而失去对原有模式的记忆。最有力的证明是,当一个人的大脑因意外事故受轻微损伤之后,并不会失去原有事物的全部记忆。人工神经网络也有类似的情况。因某些原因,无论是网络的硬件实现还是软件实现中的某个或某些神经元失效,整个网络仍然能继续工作。
人工神经网络是一种非线性的处理单元。只有当神经元对所有的输入信号的综合处理结果超过某一门限值后才输出一个信号。因此神经网络是一种具有高度非线性的超大规模连续时间动力学系统。它突破了传统的以线性处理为基础的数字电子计算机的局限,标志着人们智能信息处理能力和模拟人脑智能行为能力的一大飞跃。
2.2几种典型神经网络简介
2.2.1多层感知网络(误差逆传播神经网络)
在1986年以Rumelhart和McCelland为首的科学家出版的《ParallelDistributedProcessing》一书中,完整地提出了误差逆传播学习算法,并被广泛接受。多层感知网络是一种具有三层或三层以上的阶层型神经网络。典型的多层感知网络是三层、前馈的阶层网络,即:输入层I、隐含层(也称中间层)J和输出层K。相邻层之间的各神经元实现全连接,即下一层的每一个神经元与上一层的每个神经元都实现全连接,而且每层各神经元之间无连接。
但BP网并不是十分的完善,它存在以下一些主要缺陷:学习收敛速度太慢、网络的学习记忆具有不稳定性,即:当给一个训练好的网提供新的学习记忆模式时,将使已有的连接权值被打乱,导致已记忆的学习模式的信息的消失。
1计算机神经网络体系
人们为了因对计算机迅猛发展带来的危机在上世纪40年代就提出了神经网络体的设想,并对此加以研究实验。自80年代后已经成为人们评价计算机网络安全的重要标准。大量简单的神经元通过相互连接形成更复杂的神经结构,神经结构之间相互连接最终形成神经网络体系。神经网络体系具有十分强的的信息处理工能,可以存储分布、处理分布,有包容性和学习能力,能够处理非线性的复杂关系,是一个成长型的系统。神经网络系统通过调节自身节点之间的关系,来完成对信息的分析处理,模仿人的大脑对信息的处理方式。其具有很强的灵活性和针对性,可以进行初步的理性分析,优化其自身的信息资料库,找寻最优的解决方案。计算机神经网络系统是人类迈向人工智能化时代的一大创举,随着人工智能技术的不断进步,更加智能的机器人将随之产生。
2计算机网络安全的评估标准
计算机的使用者们根据当前计算机的使用状态制定了一系列的计算机网络安全现行标准。
2.1网络安全的定义
网络安全指的就是人们在运用互联网时信息的安全保密不被窃取和恶意破坏,系统、软件设备、硬件设备都处在良好的状态中。在计算机系统运行时不会受到木马病毒、恶意插件的攻击。信息安全、密码安全、通信安全等领域的安全都处在网络安全的范畴之中。计算机网络安全有四大原则:可控性原则,即计算机网络信息的传播控制在一定的范围内,网络上流传的信息要在法律允许的范围之内,网络管理者可以通过网络对其进行有力的控制。完整性原则,即网络数据信息未经过官方和其发行者的授权不可以私人篡改,保持网络数据的完整性就是保证网络信息的可用性。可用性原则,即网络使用者当前是否能够使用网络中的信息。保密性原则,即对计算机网络数据进行访问时,不得随意泄露信息给未获得网络授权的用户。在这个信息全球化的时代,网络安全是人们生活安全中至关重要的一项。
2.2网络安全评估标准
当今社会人们对网络信息的要求逐步提高,相应的产生了一套大家公认的评估标准。这套标准是依据现有的计算机网络技术,全面的、合理的、客观的、科学的,考虑计算机网络运用的方方面面制定出来的。坚持评估标准与实际生活相结合,便于检测和操作的可行性原则;坚持条理清晰、层次分明,有代表性的简明性原则;坚持真实准确,避免环节重复,避免节点之间相互影响的独立性原则;坚持运用完整的、全面的、准确可靠的完备性原则为信息全评价标准;坚持联系实际以现行的计算机技术水平为评价指标的准确性原则。按照以上的网络安全标准一定要与当前所在的区域网相结合,做到具体问题具体分析。
2.3网络安全体系的设定
根据计算机网络安全检查建立不同的计算机网络安全等级,大致可分为四个层次:很危险、危险、有风险、安全。很危险可用红色表示,计算机网络系统存在高危漏洞,需要紧急查杀木马病毒和恶意插件,关机后再重新启动。危险可用橙色表示,表示网络系统中有安全隐患需要处理,网络的安全等级有限,需要及时的进行杀毒处理。有风险可用黄色表示,这种情况表示计算机中有风险项,需要对计算机网络进行检测处理。安全表示当前的计算机网络状态良好无任何风险项,可用绿色表示。这种设计可以给计算机的应用者最直观的感受来判断计算机的状态。
3神经网络系统在计算机网络安全中的应用
计算机网络的主要作用是传递信息,其广泛的应用于电子商务,信息处理,电子办公等方方面面。网络黑客通过木马病毒盗取用户信息,倒卖客户资料,窃取他人财产,对网络的和谐安全产生了及其恶劣的影响。神经网络系统在计算机网络信息的传播当中起到了桥梁和过滤器的作用。信息在网络中传播不是单向的而是双向的,信息的输入和输出都是通过神经网络的神经元来完成的。计算机神经网络有三个层次组成,分别是输出层、隐藏层、输入层,通过这三个部分对信息进行加工处理。其中的隐藏层起到了传输中枢的作用,输入的信息输出时需要先输入到隐藏层中,再由隐藏层对其进行处理,最后传输到输出层中输出。在此时系统发现信息有误将会回溯至上一阶段对信息进行核对,信息精确后会再次传输回来发送至输出层。通过神经网络系统的应用能够大量准确的对信息进行合理的处理,方便了人们的生活,提高了人们的工作效率。
4神经网络系统对计算机网络安全的影响
神经网络系统作为广泛应用于人们生活中的技术,其即存在着优点,也存在着不足。神经网络技术具有良好的灵活性包容性,与传统的曲线拟合体系相比其对缺失信息和噪音反应不灵敏。一个节点只能反应一个问题,一个节点中发现的问题在整个神经网络体系的表现中将产生严重影响。其具有良好的延展性,可以把个体中的多数样本引入部分当中,将部分当中的多数样本引入到整体当中。神经网络系统具有强大的学习适应能力,可以自行总结系统处理的信息中的规律,自我调整输出模式,减少系统的误差。神经网络有线应用潜力,有线应用潜力是神经网络系统自身的基本能力,神经网络是由一个又一个节点连接而成的,两点之间的直线距离最短,处理信息的速度最快。神经网络系统具有自动处理信息关系的能力。其已经具有初步的人工智能化能力,可以自主分析较为简单的问题。虽然神经网络系统功能十分强大,但是也存在着一些不足之处。神经网络系统的结构多样化,在信息处理的过程中也会出现多种组合。因此只能出现最精确的处理结果,无法得出最准确的处理结果。神经网络系统自身的结构决定了其对局部极小问题的忽视,这种特性会影响其处理问题的准确性。对于非常复杂的数据问题其处理效果会减慢。随着计算机的应用大量的信息被记载入数据库,信息量过于庞大会影响到信息处理的效率。神经网络系统并不是真正的人脑只达到了出步的人工智能程度,其处理问题存在一定的机械性。这种问题只有通过科学家的不断研究才能得到改善。
【关键词】人工神经网络信息技术发展趋势
人工神经网络技术在处理实际问题主要包括两个过程,一个是学习训练过程,另外一个是记忆联想过程。近年来随着人工网络技术的发展,人工神经网络技术在信号处理、图像处理、智能识别等领域已经取得了巨大的改变,为人们研究各类科学问题提供了一种新的方法和手段,使人们在交通运输、人工智能、军事、信息领域的工作更加便捷,近年来随着AI的发展,人工神经网络技术得到了快速的发展阶段。
1人工神经网络技术
人工神经网络技术也称ANN,是随着上个世纪八十年代人工智能发展兴起的一个研究热点,它的主要工作原理对人脑神经网络进行抽象处理,并仿造人脑神经网络建立简单的模型,按照不同的连接方式组成一个完整的网络,因此学术界也直接将它成为神经网络。神经网络其实就是一种运算模型,它是通过大量的节点——神经元连接起来的,其中不同的节点所代表的输出函数也不同,也就是所谓的激励函数;当有两个节点连接起来时称之为通过该连接信号的加权值,也称为权重,这就相当人脑神经网络记忆。人工神经网络技术是采用并行分布式系统,这种工作机理与传统的信息处理技术和人工智能技术完全不同,是一种全新的技术,它克服了传统基于逻辑符号的人工智能处理非结构信息化和直觉方面的缺陷,具有实时学习、自适应性和自组织性等特点。
2人工神经网络技术应用分析
随着人工神经网络技术的发展,它在模式识别、知识工程、信号处理、专家系统、机器人控制等方面的应用较广。
2.1生物信号的检测分析
目前大部分医学检测设备都是通过连续波形得到相关数据,从而根据所得数据对病情进行诊断。人工神经网络技术就是应用了这样的方式将多个神经元组合起来构成,解决了生物医学信号检测方面的难题,其适应性和独立性强,分布贮藏功能多。在生物医学领域该技术主要应用于对心电信号、听觉诱发电位信号、医学图像、肌电荷胃肠等信号的处理、识别和分析。
2.2医学专家系统
传统的医院专家系统是直接将专家的经验、学历、临床诊断方面取得的成绩等存储在计算机中,构建独立的医学知识库,通过逻辑推理进行诊断的一种方式。进入到二十一世纪,医院需要存储的医学知识越来越多,每天产生新的病况和知识,过去的一些专家系统显然已经无法适应医院的发展需求,因此医院的效率很低。而人工神经网络技术的出现为医院专家系统的构建提出了新的发展方向,通过人工神经网络技术,系统能够自主学习、自己组织、自行推理。因此在医学专家系统中该网络技术应用面较广。麻醉医学、重症医学中生理变量分析和评估较多,目前临床上一些还没有确切证据或者尚未发现的关系与现象,通过人工神经网络便能有效地解决。
2.3市场价格预测
在经济活动中,传统统计方法受到一些因素的制约,无法对价格变动做出准确的预测,因此难免在预测的时候出现失误的现象。人工神经网络技术能够处理那些不完整的、规律不明显、模糊不确定的数据,并作出有效地预测,因此人工神经网络技术具有传统统计方法无法比拟的优势。例如人工神经网络技术可以通过分析居民人均收入、贷款利率和城市化发展水平,从而组建一个完整的预测模型,准确预测出商品的价格变动情况。
2.险评价在从事某一项特定的活动时,由于社会上一些不确定因素,可能造成当事人经济上或者其他方面的损失。因此在进行某一项活动时,对活动进行有效的预测和评估,避免风险。人工神经网络技术可以根据风险的实际来源,构筑一套信用风险模型结构和风险评估系数,从而提出有效地解决方案。通过信用风险模型分析弥补主观预测方面的不足,从而达到避免风险的目的。
3人工神经网络技术未来发展
人工神经网络克服了传统人工智能对语言识别、模式、非结构化信息处理的缺陷,因此在模式识别、神经专家系统、智能控制、信息处理和天气预测等领域广泛应用。随着科学技术的进步,AI的快速发展,AI与遗传算法、模糊系统等方面结合,形成了计算智能,很多企业和国家开始大规模研发AI,人工神经网络正在模拟人类认知的方向发展,目前市场已经有很多不少人工智能产品面世。
4结语
通过上述研究分析,人工神经网络技术已经取得了相应的发展,但还存在很多不足:应用范围狭窄、预测精度低、整理模型缺乏创新等,因此需要我们在此基础上不断寻找新的突破点,加强对生物神经元系统的研究和探索,进一步挖掘其潜在的价值,将人工神经网络技术应用在更多领域中,为社会创造更大的财富。
参考文献
[1]周文婷,孟琪.运动员赛前心理调控的新策略——基于人工神经网络技术的比赛场地声景预测(综述)[J].哈尔滨体育学院学报,2015,33(03):15-21.
[2]张红兰.人工神经网络技术的应用现状分析[J].中国新通信,2014(02):76-76.