矿石中的天然发射物物质性质会在人们开采或者冶炼、加工、使用过程中发生迁移、浓集或者扩散的现象,同时这些含有天然放射性核素的产品也好,废物也好,都会对环境以及人体造成一定的危害性,因此,必须加强对其钼矿放射性环境监督管理及放射性污染的防治,进而来保证人们的生活安全以及生命安全等,有效的推动人们与自然环境的可持续发展。
1钼矿开采导致的放射性污染
对于开采钼矿的放射性污染原体主要源自于含有天然放射性核素的采矿废石。其原因在于:废石中放射性元素的不断衰变产生的,属于辐射污染环境,提高了当地环境γ辐射水平。再者,加上长期受到雨水的灌溉,使得废石中的放射性核素逐渐的渗入到土壤以至于地下水中,致使矿区周边土壤中的非放重金属和镭-226、钍-232、钾-40含量升高,转移到地表植物中,造成其总α、β量增加,也就形成了相应的食物链放射性污染。在开采钼矿时产生的废水有:处理后的工艺废水、开采过程中由坑道而排出的采矿废水、还有废石长期的受到的淋滤雨水等。这些水中都有着大量的放射性核素,长期的变化成为了另一种放射性污染源,逐渐的渗透到低下水中,使得水体中的天然放射性核素浓度逐渐提高。
随着矿石、废石、废水等放射污染源的扩散,逐渐的进入大气层中,开始向着四周蔓延,形成一种强烈的空气污染现象,尤其,其中的氡与空气中的浮游粒子相结合,会形成一种放射性的气溶胶,长期的弥漫在空气中,而这些物质会随着人的呼吸进入到人体当中,对人类的身体造成极大的伤害,甚至会导致人们致癌。
2钼矿开采放射性污染防治措施
2.1在矿山开采过程中,要时时对造成的放射性污染进行跟踪监测并及时治理,实行边开采边治理的制度,及时做好采完部分的矿山的退役治理工作,避免放射叉污染。
2.1.1保证井下坑道空气足够的换气率降低钼矿井下的主空气中氡及其子体的浓度要是保证通风系统的完善,通过合理应用排氡通风技术实现。利用机械通风压力防止来自采空区及矿岩裂隙的污染,是目前最为有效的方法。由此可见提高井下空气换气率可以降低氡及其子体的平衡因子,大大减少因吸入氡子体而产生的额外年有效剂量。由于井下工人的额外年有效剂量主要是由氡子体所贡献,因此,提高井下空气换气率是降低井下工人额外年有效剂量的最有效的途径。
2.1.2预通风和湿式作业放射性气体氡衰变产生的子体钋、铋、铅等重金属粒子,采用湿式作业不仅可以降尘,还可使氡衰变产生的子体迅速被水雾携带而沉降,极大地减少井下空气中的氡子体吸入体内的几率,减少因吸入氡子体而产生的额外年有效剂量。
2.1.3佩戴防护口罩井下工人在作业时,应当佩戴防护口罩,这样既可防尘还可使氡衰变产生的金属粒子得到过滤,减少因吸入氡子体而产生的额外年有效剂量。
2.1.4井下矿石废矿石及时运出井下坑道中氡的来源是多方面的,坑道中堆积的矿石、废矿石将析出氡,及时将坑道中的矿石、废矿石运出,避免在坑道中大量堆积,是降低井下氡及其子体α潜能浓度的有效途径之一。
2.1.5井壁降低氡的析出井壁析出的氡是井下氡的主要来源,利用壁面水泥喷浆的办法可以大大抑制氡从井壁析出,可使井下氡及其子体α潜能浓度再度降低。
2.1.6采空区及早填埋封闭及早封闭井下采空区可大大减少井下通风设施的负荷,提高井下空气换气率,降低井下氡浓度,降低平衡因子,从而降低井下空气中氡子体α潜能浓度,减少井下氡的排出量,有利于井外空气放射性环境的改善。
2.2废石污染防治措施废矿石一般都建筑与紧挨井口下的山谷之中,而进口工业场常铸于进口附近,在施工建设过程中,地基都需要垫支大量的坑道来进行开发过程中产生了许多的废石,为了节省其堆放的面积,一般都将这些大量的坑道废矿石弄成拦石坝实施集中对方,待工业场落实之后,其地面一般可以采取铺设水泥来对废石矿的放射性污染进行处理,在此,应该注意的是:工业场在选择建筑地理位置时,应离废矿石有一定的距离,并且建设中的地基,最好不要采用具有放射眭强的废矿石以图省事为铺地材料,将对人体的伤害降至到最低。
2.3废水污染的防治措施在开矿过程中,不可缺少的即是水的使用,而当水使用过后,其废水经过长时间的渗透,将会渗到地下,影响正常的地下水。在钼矿开采过程中,其废水的形成主要有:坑道废水以及废矿石场得淋溶渗水。对此,在对废水污染的防治过程中,可以采取在废石场建立栏石坝或者泄洪道以及集中性的水池等,防治废水的到处流窜,将废水进行集中管理,在此,其石坝的建筑应加强其质量方面的监督,防治使用过程中石坝的垮塌。
此外,在建设石坝的基础之上,对矿区内的固定水体,如:河流、水库、山泉等采取定期的水质监测,并成立水质监测点,便于及时对矿区的进水或者出口水流实施监测,对有污染源的水质,可以做到及时查明来源并消除,同时对于沉淀在地下的污染物可使用化学物质进行处理,确保废水污染的防治工作顺利进行。
3钼矿矿区居民辐射安全防护措施
3.1矿区空气质量的安全防护措施
钼矿开采的放射性核素可以通过空气实施大面积的辐射,对空气严重影响,同时对人体也有大量的危害性,但是,放射性的核素受一定距离的限制,其散播方式是以通风、排风口,以及不收v辐射影响而产生的氡,其危害性主要是废石场析出的氡的弥漫,一般在1.5之外的影响将会很小,能够在居民的接受范围内,因此,可以安排居民在辐射范围以外安居,确保居民区与矿石场、废石场之间的距离必须大于辐射安全防护距离,借以保证居民的剂量不超标,在辐射区内严格禁止居民的居住。在此,还应注意的是通风、排风位置的放射性辐射的防御,空气是随风跑动实施的弥漫,所以,对于通风口、排风口的位置应选择有山梁或者树林等能够阻隔的矿区周围。
3.2生活饮用水方面的安全防治措施
关键词:可持续发展;矿山;治理;恢复措施
近年来,矿产资源的开发进入了一个井喷阶段,为经济建设带来巨大的贡献,但同时,也造成矿区及周围的地质环境受到了严重的破坏,直接影响到国土的开发、人们的居住环境以及社会的稳定生产,进一步影响经济和社会的可持续发展[1]。矿产资源的过度开发造成了严重的水土资源流失、地质灾害频发、水资源受到严重的污染等。纵观当下各地矿山地质环境保护与恢复措施不完善。对此,本文开展针对可持续发展需要的矿山地质环境治理与恢复措施的研究。
1可持续发展的矿山地质环境治理与恢复措施研究
1.1矿山开采后泥石流的治理恢复措施
泥石流形成的基本条件主要包括地质条件、水源条件以及地形条件三个因素。其中地质条件几种表现在泥石流形成的松散碎屑物质上[2]。当矿山开采完毕后,产生了大量废渣、废石和废土的排放,是形成泥石流地质灾害的主要物质来源;由于矿山沟谷之间的发育、山坡的坡度较大、相对高度较高等地形时形成泥石流地质灾害的主要地形条件。对于部分地区而言,强降水季节已经成为了泥石流地质灾害出现的高发季节,图1为典型泥石流结构示意图。根据泥石流的形成条件和图1中泥石流的各结构组成,本文提出以下具有针对性的治理恢复措施:第一:清除矿山开采后的物源。待矿山开采施工结束后应当立即将矿山开采区域内的废石、废渣、废土等。第二:建立支挡工程。当对矿山开采后的物源清理时出现成本较高或没有合理的石、废渣、废土堆积场地时,应当采用修筑拦渣墙、拦砂坝以及格栅坝等永久性建设工程,从而防止物源向矿山下游地区的转移。第三:清理水源条件。在矿山开采阶段立即实施排水及排导工程,例如截排水沟、埋设排水管管道等工程,防止矿区表面的水源汇入到矿区中的废渣场、废石场当中。第四:实施植被恢复工程。通过栽种树木、覆土种草的形式,恢复矿区的植被,进一步缩小地面水资源的径流,并起到对矿区土质加筋的作用,同时植被恢复还可促进矿区的可持续发展。
1.2采空区及矿山地面塌陷的治理恢复措施
在对矿山进行开采的过程中,由于对地下水进行大规模的抽排、开采矿体埋深小或强采保安矿柱等操作,都会造成采空区和积水区面积的增加,导致矿山地面出现下沉、塌陷以及地裂缝的产生。如图2。由于矿山企业在生产建设以及地下水抽排过程中造成的地面塌陷问题可通过对该地区水文地质条件查询的基础上,采用防渗帷幕的治理恢复措施,从而有效的控制易于出现塌陷位置的地下水位变化[2]。对于已经形成矿山地面塌陷的区域,应当根据回填土材料、回填高度以及回填材料顺序的要求,采取土地平整的治理恢复措施,对其进行严格的控制,防止灾害进一步恶化。对于采空区中存在的地裂缝问题,应当采用注浆加固。土地平整等施工进行治理。
1.3放射性矿山环境污染的治理恢复措施
对于放射性的矿山开采,由于开采过程中的操作不符合标准,极易出现放射性物质的泄露,对矿山环境造成严重的污染,抑制矿山环境的可持续发展。如图3,针对放射性矿山环境污染的治理恢复措施可通过封堵坑口的措施实现。通过封堵坑口切断放射性物质对环境造成的污染源,并更好的恢复矿区原有的坑口面貌,抑制放射性物质从坑口泄露,并在大气中进一步扩散。同时还应当加强抑制矿区内污水的外流现象,防止矿区周围的人、畜误入,并防止矿区地表水流受到污染。对于矿区开采后处理不当形成的废石、废渣堆等,还可以通过堆砌挡墙结构、排水沟结构的方式进行安全化、稳定化处理,从而防止矿区中的废石出现下滑、流失以及二次污染的发生。
1.4尾矿化学污染的治理恢复措施
尾矿中的废石、废渣和废土被大量的堆放,占用了大量的矿山地质资源,最终还会出现矿山地质污染、水土体化工化以及危险金属矿物质的产生。在矿山开采过程中,通常情况下,尾矿的总量占据矿石总量的60%~75%。因此,对于避免出现尾矿化学污染的问题发生,首先要对尾矿中的矿产资源和能源进行开发和利用。尾矿中的高质量原料可以用作建筑施工材料,但在实际利用时还应当对尾矿中化学成分进行全面的分析,检查原料中是否含有对人体有害的物质。运用尾矿还可以作为矿山开采井下施工时的充填材料,进一步提高尾矿资源的利用率和利用范围,降低尾矿资源的堆积。